
Compatible Coarsening in the Multigraph

Algorithm

Randolph E. Bank∗

October 13, 2005

Abstract

We present some heuristics incorporating the philosophy of compati-
ble relaxation into an existing algebraic multigrid method, the so-called
multigraph solver of Bank and Smith [1]. In particular, approximate left
and right eigenvectors of the iteration matrix for the smoother are used
in computing both the sparsity pattern and the numerical values of the
transfer matrices that correspond to restriction and prolongation. Some
numerical examples illustrate the effectiveness of the procedure.

1 Introduction

The modern era of research on algebraic multilevel methods was inspired by
Brandt and co-workers [2, 3, 4, 5]. See Wagner [6] and Stüben [7] for recent
surveys of the field. Although research on algebraic multilevel methods is now
quite widespread, one of the largest current efforts is centered at Lawrence
Livermore National Laboratory, in the Center for Applied Scientific Computing
and their collaborators [8, 9, 10, 11, 12].

Multilevel algorithms typically consist of smoothing steps interlaced in some
way with coarse grid correction steps. The coarse grid correction can be further
decomposed in terms of restriction and prolongation operations, which define the
mappings between two adjacent levels, and the coarse mesh operator itself. The
algebraic multilevel solver described here evolved from the multigraph algorithm
described in [1]. The work presented here is related to the construction of the
restriction and prolongation operators (transfer matrices) in the coarse grid
correction. This involves both the selection of the coarse graph points, and the
determination of the restriction and interpolation coefficients (the numerical
values of matrix elements in the transfer matrices).
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The goal of compatible relaxation, or compatible coarsening as it is called
here, is to construct a coarse grid correction that complements the smoother in
the sense that it provides good error reduction for components of the error where
the smoother is least effective. Such algorithms typically are heuristic, because
of the need to keep the coarse grid correction inexpensive to compute, and
also inexpensive to apply. The basic idea of compatible relaxation is not new;
it has been widely studied, although not always under the name compatible
relaxation, and there are many competing ideas. See, for example [13, 14,
15, 16, 17, 18, 19, 20, 8, 10] for some alternative approaches. Some unusual
features of the algorithms described here include the use of local least squares
to (approximately) interpolate certain test vectors, and the ability to specify the
size of the coarse system a priori, through the use of a (user-specified) coarsening
factor ρ.

The remainder of this paper is organized as follows. In Section 2, we provide
a brief summary of the entire multigraph algorithm. In Section 3, we consider
the issue of computing numerical values for the transfer matrices given their
sparsity pattern. In Section 4, we describe our heuristic for computing the spar-
sity pattern. In both sections, left and right eigenvectors of the iteration matrix
for the smoother are approximated by a few iterations of the power method.
These approximate eigenvectors form the basis of our compatible coarsening
heuristics. See [21, 22, 23] for some related ideas on frequency filtering. In
Section 5, we provide some numerical illustrations illustrating the procedures.
The multigraph solver is implemented in Fortran 77. The source code is avail-
able as part of the PLTMG 9.0 software package [24], and also separately as a
stand-alone solver for sparse linear systems of equations [25].

2 Matrix formulation

Let A be a large sparse, nonsingular N×N matrix. We assume that the sparsity
pattern of A is symmetric, although the numerical values need not be. We will
begin by describing the basic two-level method for solving

Ax = b. (1)

Let B be an N × N nonsingular matrix, called the smoother, which gives rise
to the basic iterative method used in the multilevel preconditioner. In our case,
B is an approximate factorization of A, i.e.,

B = (L + D)D−1(D + U) ≈ P tAP, (2)

where L is (strict) lower triangular, U is (strict) upper triangular with the same
sparsity pattern as Lt, D is diagonal, and P is a permutation matrix. The
matrix B is computed via an ILU factorization of P tAP , using a user specified
drop tolerance to control the fill-in. The permutation matrix P is determined by
applying the minimum degree algorithm to the graph of the matrix A, and the
ILU itself is modeled on sparse Gaussian elimination techniques [26]. Additional
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details regarding the smoother may be found in [1]. Other approaches to ILU
in multilevel algorithms can be found in [27, 28, 29, 30, 31]. We remark that our
compatible coarsening algorithms apply to more general smoothers, and do not
rely on the specific choice of smoother made here. For simplicity, henceforth in
this section we assume P = I.

Given an initial guess x0, m steps of the smoothing procedure produce iter-
ates xk, 1 ≤ k ≤ m, given by

xk = xk−1 + B−1(b−Axk−1). (3)

The second component of the two-level preconditioner is the coarse grid
correction. We classify existing unknowns as either fine or coarse. This is
represented algebraically by a permutation matrix P̂ such that

P̂AP̂ t =
(

Aff Afc

Acf Acc

)
, (4)

where the subscripts f and c denote fine and coarse, respectively. The N̂ × N̂
coarse grid matrix Â is given by

Â =
(
Vcf Icc

) (
Aff Afc

Acf Acc

) (
Wfc

Icc

)
= VcfAffWfc + VcfAfc + AcfWfc + Acc. (5)

The matrices Vcf and W t
fc are N̂ × (N − N̂) matrices with identical sparsity

patterns; thus Â has a symmetric sparsity pattern. If At = A, we require
Vcf = W t

fc, so Ât = Â.
Let

V̂ =
(
Vcf Icc

)
P̂ , Ŵ = P̂ t

(
Wfc

Icc

)
. (6)

In standard multigrid terminology, the matrices V̂ and Ŵ are called restriction
and prolongation, respectively. Given an approximate solution xm to (1), an
exact coarse grid correction for computing an iterate xm+1 is defined as follows.

r̂ = V̂ (b−Axm),

Âδ̂ = r̂, (7)

xm+1 = xm + Ŵ δ̂.

A two level iteration consists of m pre-smoothing steps, followed by an exact
coarse grid correction, followed by m post-smoothing steps. Since Âδ̂ = r̂ is
of the same form as our original problem (1), the two-level iteration may be
generalized to the multilevel case by applying recursion to the solution of the
equation Âδ̂ = r̂ in (7). In this work (and in our code) we restrict attention
to just the symmetric V-cycle with m = 1 pre-smoothing and post-smoothing
iterations. To simplify notation we now use subscripts to denote level; for
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example, AJ now denotes to level J matrix and BJ the level J smoother. For
the coarsest mesh solution (J = 1), our procedure is somewhat nonstandard;
instead of a direct solution of (1), we compute an approximate solution using
m = 1 smoothing iterations. We illustrate the practical consequences of this
decision in Section 5. Here we summarize our recursive V-cycle procedure for
approximately solving (1) on level J .

procedure V-cycle(J, x, b)

if J = 1, then

x← x + B−1
J (b−AJx).

else

x← x + B−1
J (b−AJx).

b̂← V̂J(b−AJx); x̂← 0.

V-cycle(J − 1, x̂, b̂).

x← x + ŴJ x̂.

x← x + B−1
J (b−AJx).

end if

end V-cycle

If A is symmetric, then so is the iteration matrix implicitly defined by our V-
cycle, and thus it can be used as a preconditioner for a symmetric Krylov space
method. If A is also positive definite, so is our preconditioner, and the standard
conjugate gradient method could be used; otherwise the CSCG method [32],
SYMLQ [33], or a similar method could be used. In the nonsymmetric case, the
V-cycle preconditioner could be used in conjunction with the CSBCG method
[32], GMRES [34], or a similar method.

In this work, we develop algebraic procedures for constructing the prolon-
gation and restriction matrices V̂ and Ŵ of (6). There are three major issues
that must be addressed:

• First, one must determine the block structure of these matrices; this in-
volves choosing which unknowns are coarse and which are fine. This re-
duces to determining the permutation matrix P̂ of (4).

• Second, one must determine how coarse and fine unknowns are related, the
so-called parent-child relations [6]. This involves computing the sparsity
patterns for the matrices Vcf and Wfc.

• Third, one must compute the numerical values for these matrices, the
so-called interpolation coefficients [13].

4



Computing the permutation matrix P̂ is deferred until Section 4, while the other
two issues are addressed in Section 3. Other recent approaches to coarsening
can be found in [35, 13, 14, 15, 16, 17, 18, 19, 20, 8, 10].

3 Computing the transfer matrices

Here we consider the construction of the transfer matrices Wcf and Vfc, given
the fine-coarse partition defined by the permutation matrix P̂ of (4). For con-
venience and to simplify notation, in this section we assume that P̂ = I and
that the block structure given in (4) is known.

Our algorithm uses the vectors ŵ and v̂ defined as follows. Let w0 and v0

be given and let

wk = (I −B−1A)wk−1,

vk = (I −B−tAt)vk−1,

for 1 ≤ k ≤ `, and then set

ŵ = w`/||w`||,
v̂ = vm/||vm||.

When At = A, we compute only wk, and in the practical implementation we
normalize the vk and wk. Typically we take w0 = v0 = e, the vector of ones,
and choose ` to be a small fixed integer such as ` = 3. The vectors ŵ and v̂ are
(possibly crude) approximations to eigenvectors corresponding to the spectral
radii of the error propagation matrices for A and At generated by a few steps of
the power method. Similar approaches have been employed by many authors;
we mention in particular adaptive filtering techniques [21, 22, 23].

Intuitively, ŵ and v̂ are vectors that we want to approximate well in the
coarse subspace. In particular, ŵ should be in the column space of Ŵ . Similarly
v̂ should be in the column space of V̂ t. This implies that

ŵf = Wfcŵc,

v̂f = V t
cf v̂c, (8)

where ŵf and ŵc are the fine and coarse blocks of the vector ŵ. In other
words, (8) indicates that Wfc should be chosen to interpolate ŵ exactly. We
note that if sparsity patterns of Wfc and Vcf are known, but the numerical
values are unknown, then (8) can be interpreted as simple linear constraints on
coefficients for each row of the matrix.

In our procedure, we usually take the sparsity pattern of Wfc to be the same
as Afc. We initially choose Ṽcf and W̃fc according to the formulae

W̃fc = −RffD−1
ff Afc,

Ṽcf = −AcfD−1
ff R̃ff . (9)
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Here Dff is a diagonal matrix with diagonal entries equal to those of Aff .
In this sense, the nonzero entries in Ṽcf and W̃fc are chosen as multipliers in
Gaussian elimination. The nonnegative diagonal matrices Rff and R̃ff are
chosen such that nonzero rows of Wfc and columns of Vcf , respectively, have
unit norms in `1.

This initial choice is then modified via least squares to satisfy (8). Here we
will describe our procedure for computing a single row of Wfc. We suppose
that this row has K ≥ 2 nonzeros. Let r̃t be the compressed row vector of size
K containing only the nonzero entries. Let z be the corresponding vector of
coefficients in ŵc, and let u be a vector with entries ±1 with signs chosen such
that r̃tu = 1, reflecting (9).

The final vector r = r̃ + δ is chosen to satisfy

rtu = 1,

rtz = β, (10)

where β is the appropriate entry from ŵf . Equations (10) represent two linear
constrains on the coefficients of δ. The first constraint (weakly) controls both
the signs and the magnitudes of the entries, while the second constraint imposes
the condition that Wfc should be chosen to interpolate ŵ exactly. Thus (10)
can be interpreted as a system of two linear equations for the K ≥ 2 coefficients
of δ; in the typical case, this system will be under determined. The classical
least squares (generalized inverse) solution for this under determined system is
formally given by

r = r̃ +
(
u z

) (
utu utz
utz ztz

)−1 (
0

β − r̃tz

)
,

which is easily computed by solving a 2× 2 linear system. In practice, we must
check to be sure the matrix is sufficiently well conditioned, and if not, take
δ = 0.

4 Choosing the fine-coarse partition

We now consider the selection of coarse unknowns. In our procedure, we com-
pute a target value Ntrgt for the size of the coarse set N̂ as Ntrgt = bN/ρc+ 1,
and try to achieve a coarse set with N̂ ≤ Ntrgt. The parameter ρ > 1 is user
specified; a typical value would be ρ = 4 for discretizations of partial differen-
tial equations in two space dimensions. An initial guess for the coarse set is
provided by the coarsening algorithm used in the previous version of the multi-
graph code, based on the well-known reverse Cuthill–McKee algorithm, a sparse
matrix ordering technique that tends to yield matrices with minimal bandwidth
[36]. Once the vertices have been ordered in this fashion, we can make a breadth-
first search to compute a maximal independent set (in the graph theory sense),
which becomes our initial guess for the coarse set. A more detailed description
of this part of our coarsening procedure can be found in [1].
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Once a reasonable independent set has been computed as our initial guess,
it is iteratively updated based on the approximate eigenvectors v̂ and ŵ and the
constrained approximate eigenvectors v̄ and w̄ computed by

w̃k = Ec(I −B−1A)Ecw̃k−1,

ṽk = Ec(I −B−tAt)Ecṽk−1,

for 1 ≤ k ≤ `, with

w̄ = w̃`/||w`||,
v̄ = ṽ`/||v`||.

Here Ec is a diagonal matrix with zero diagonal entries for coarse unknowns
and ones otherwise. The initial guess is taken as Ece, where as before, e is
the vectors of ones. Note also that w̄ and v̄ are normalized consistently with v̂
and ŵ. Overall, this calculation provides an impression of the behavior of the
smoother on the complement of the current coarse space. The calculation of v̄
and w̄ is similar to, and inspired by, the compatible relaxation approaches used
by the AMG group at Lawrence Livermore National Laboratory [9, 11].

Based on these approximate eigenvectors, we compute

ŝi = max
j∈{i}∪adj(i)

{|v̂j |+ |ŵj |},

s̄i = |v̄i|+ |w̄i|.

Using ŝi and s̄i we define some heuristics for changing the status of a given
vertex from fine to coarse or coarse to fine. If a given fine vertex is changed to
coarse, we assume that the effect is to reduce the current value of s̄i to zero.
On the other hand, if a current coarse vertex is changed to fine, we assume the
effect is to increase zero to ŝi.

Our iterative procedure uses a threshold parameter θ = θ0 maxk{|v̂k|+|ŵk|},
with 0 < θ0 < 1, and a bias parameter η > 1; typical values are θ0 = .1 and
η = 10. Coarse vertices are ordered according to their values of ŝi and fine
vertices are ordered according to their values of s̄i. Given an existing fine-coarse
partition, we update the partition depending on the value of N̂ .

Case 1: N̂ > Ntrgt. In this case, we reduce the number of coarse unknowns
to Ntrgt, choosing the least harmful based on the ordering of the ŝi.

Case 2: N̂ < Ntrgt. In this case, we first try to reduce the number of coarse
unknowns, changing to fine any coarse unknown that satisfies ŝiη < θ. We then
change from fine to coarse as many fine unknowns as possible that satisfy s̄i > θ.
For this, we use the ordering based on s̄i, and stop when N̂ = Ntrgt or s̄i ≤ θ.

Case 3: N̂ = Ntrgt. In this case we try to simultaneously change fine
unknowns to coarse, and coarse unknowns to fine, maintaining N̂ = Ntrgt. The
fine unknown with largest s̄i is compared with the coarse unknown with the
smallest ŝj . If ŝjη < s̄i an exchange is made. The algorithm continues through
the ordered lists, exchanging pairs of coarse and fine unknowns until ŝjη ≥ s̄i.
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We apply this update procedure to the independent set partition provided
by the reverse Cuthill-McKee ordering. For the first iteration, we typically
have Case 1 or Case 2. We then make a second iteration, using the updated
coarse–fine partition and new approximate eigenvectors v̄ and w̄. For this second
iteration, we typically have Case 3, although Case 2 is also possible.

Finally, the coarsened matrix Â of (5) is computed and possibly sparsified
using the user specified drop tolerance to remove small off-diagonal elements.
Empirically, applying a drop tolerance to Â at the end of the coarsening proce-
dure has proved more efficient, and more effective, than trying to independently
sparsify its constituent matrices.

5 Numerical experiments

In this section, we present a few numerical illustrations. Some of these ex-
periments reprise those given in [1], which document the behavior of the orig-
inal multigraph program, and [28], which describes an earlier algebraic hier-
archical basis algorithm. These experiments were run on a Linux dual Xeon
3.06GHz workstation, using double precision arithmetic and the g77 compiler.
The multigraph solver, subroutines to generate the structured matrix examples,
and data files containing the unstructured matrix examples can be found at
http://cam.ucsd.edu/˜reb.

In our first sequence of experiments, we consider several matrices loosely
based on the classical case of 5-point centered finite difference approximations
to −∆u on a uniform square mesh. Dirichlet boundary conditions are imposed.
This leads to the n× n block tridiagonal system

A =


T −I
−I T −I

. . . . . . . . .
−I T −I

−I T


with T the n× n tridiagonal matrix

T =


4 −1
−1 4 −1

. . . . . . . . .
−1 4 −1

−1 4

 .

This is a simple test problem easily solved by standard multigrid methods. In
contrast to this example we also consider the block tridiagonal system

Ā = 8I −A.

Both A and Ā have the same eigenvectors and the same eigenvalues, although
the association of eigenvectors and eigenvalues are reversed in the case of Ā.
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That is, the so-called smooth eigenvectors are associated with large eigenvalues,
while rough eigenvectors are associated with smaller eigenvalues. Although Ā
does not arise naturally in the context of numerical discretizations of partial
differential equations, it is of interest because it defies much of the conventional
wisdom for multigrid methods.

Third, we consider block 3× 3 systems of the form

S =

 A 0 Cx

0 A Cy

Ct
x Ct

y −D

 ,

where A is the discrete Laplacian and D is a symmetric positive definite “sta-
bilization” matrix with a sparsity pattern similar to A. However, the nonzeros
in D are of size O(h2), compared to size O(1) nonzero elements in A. Cx

and Cy also have sparsity patterns similar to that of A, but these matrices are
nonsymmetric and their nonzero entries are of size O(h). Such matrices arise
in stabilized discretizations of the Stokes equations. About one third of the
eigenvalues of S are negative, so S is quite indefinite.

In Table 1, Levels refers to the number of levels used in the calculation. The
drop tolerance was set to ε = 10−2 for all matrices. The coarsening parameter
was set to ρ = 4. The initial guess for all problems was x0 = 0.

In Table 1, the parameter Digits refers to

Digits = − log
||rk||
||r0||

. (11)

In these experiments, we asked for six digits of accuracy. The column labeled
Cycles indicates the number of multigrid cycles (accelerated by CSCG) that were
used to achieve the indicated number of digits. Finally, the last two columns,
labeled Init. and Solve, record the CPU time, measured in seconds, for the
initialization and solution phases of the algorithm, respectively. Initialization
includes all the orderings, incomplete factorizations, and computation of transfer
matrices used in the multigraph preconditioner. Solution includes the time to
solve (1) to at least six digits given the preconditioner.

In analyzing these results, it is clear that our procedure does reasonably well
on all three classes of matrices. Although it appears that the rate of conver-
gence is not independent of N , it seems apparent that the work is growing no
faster than logarithmically. CPU times for larger values of N are affected by
cache performance as well as by the larger number of cycles. Times for some
smaller values of N were below the resolution of the Linux utility etime and
were reported as zero.

For the highly indefinite Stokes matrices S, it is important to also note the
robustness, that the procedure solved all of the problems. With more nonzeros
per row on average, the incomplete factorization was more expensive to compute
than for the other cases. This is reflected in relatively larger initialization and
solve times.

In our next experiment, we illustrate the effect of the drop tolerance ε and
the number of levels. For the 5-point matrix A with N = 160000, we solved
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Table 1: Performance comparison.

n N Levels Digits Cycles Init. Solve

Discrete Laplacian A, ε = 10−2

10 100 3 6.1 2 0.0e 0 0.0e 0
20 400 4 6.9 3 1.0e-2 0.0e 0
40 1600 5 7.1 4 3.0e-2 0.0e 0
80 6400 7 7.2 5 1.1e-1 2.0e-2

160 25600 8 7.4 6 4.7e-1 1.4e-1
320 102400 9 6.1 5 2.3e 0 6.6e-1

Ā = 8I −A, ε = 10−2

10 100 3 6.9 2 0.0e 0 0.0e 0
20 400 4 8.3 3 1.0e-2 0.0e 0
40 1600 5 7.0 3 2.0e-2 1.0e-2
80 6400 7 6.9 3 1.0e-1 1.0e-2

160 25600 8 6.3 3 4.5e-1 7.0e-2
320 102400 9 6.1 3 2.4e 0 3.8e-1

Stokes matrix S, ε = 10−2

10 300 4 6.8 2 1.0e-2 0.0e 0
20 1200 5 8.4 3 4.0e-2 0.0e 0
40 4800 6 7.8 3 2.6e-1 4.0e-2
80 19200 7 6.8 6 1.4e 0 2.6e-1

160 76800 8 6.3 8 7.1e 0 1.9e 0

the problem for ε = 10−k, 1 ≤ k ≤ 3, and 1 ≤ levels ≤ 7. We terminated
the iteration when the solution had six digits, as measured by (11). We also
provide the total non zeros for the system matrices on all levels (

∑
|A|) and the

corresponding approximate LDU factorizations (
∑
|U |), measured in thousands

of entries.
Here we see that our method behaves in a very predictable way. In general,

decreasing the drop tolerance or increasing the number of levels improves the
convergence behavior of the method. We note that, unlike the classical multigrid
method, where the coarsest matrix is solved exactly, in our code we have chosen
to approximately solve the coarsest system using just one smoothing iteration
using the incomplete factorization. When the maximum number of levels are
used, as in Table 1, the smallest system is typically 1 × 1 or 2 × 2, and this
is an irrelevant remark. However, in the case of Table 2, the fact that the
smallest system is not solved exactly significantly influences the overall rate of
convergence. This is why, unlike methods where the coarsest system is solved
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Table 2: Dependence of convergence on ε and levels: discrete Laplacian A,
N = 160000, ρ = 4.

ε levels Digits Cycles Init. Solve
∑
|A|

∑
|U |

1 6.0 362 0.9 23.4 479 643
2 6.0 116 2.3 15.2 678 802
3 6.1 52 2.7 7.4 727 850

10−1 4 6.1 30 2.8 4.3 740 861
5 6.2 15 2.8 2.2 743 864
6 6.6 10 2.8 1.6 743 864
7 6.1 9 2.8 1.5 743 864
1 6.0 110 1.2 8.0 479 1236
2 6.1 43 3.0 6.5 678 1662
3 6.1 23 3.6 3.9 730 1769

10−2 4 6.0 12 3.6 2.2 744 1794
5 6.2 7 3.7 1.5 748 1800
6 6.8 6 3.7 1.3 749 1801
7 7.0 6 3.7 1.3 749 1801
1 6.0 38 1.7 3.2 479 1999
2 6.2 17 4.2 3.1 678 2818
3 6.3 9 4.8 2.1 729 3019

10−3 4 7.2 5 4.9 1.3 743 3065
5 7.3 5 4.9 1.1 747 3075
6 7.4 5 4.9 1.2 748 3076
7 7.4 5 4.9 1.2 748 3077

≈ 0 1 11.2 1 8.1 0.2 479 5626

exactly, increasing the number of levels often improves the rate of convergence.
We also include in Table 2 the case ε = 0, sparse Gaussian elimination. (In

fact, our code uses µ||A|| as the drop tolerance (µ is the machine epsilon) when
the user specifies ε = 0 to avoid dividing by zero.) Here we see that Gaussian
elimination is reasonably competitive on this problem. However, we generally
expect the initialization cost for ε = 0 to grow like O(N3/2). For level = 1 and
ε > 0, we expect the solution times to grow like O(Np), p > 1. For the best
multilevel choices, we expect both initialization and solution times to behave
like O(N)−O(N log N).

In our next example, we consider the effect of the coarsening factor ρ for
the 7-point discrete Laplacian on the unit cube. With a 50× 50× 50 mesh, we
have N = 125000. In Table 3 we present data rates for ρ = 2, 4, 8, 16, 32, 64
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Table 3: Dependence of convergence on ρ: three dimensional discrete Laplacian
A, N = 125000, ε = 10−2.

ρ levels Digits Cycles Init. Solve
∑
|A|

∑
|U |

2 6.1 17 3.9 2.3 507 1234
64 3 6.1 17 3.9 2.3 507 1234

4 6.1 17 3.9 2.3 507 1234
2 6.3 17 4.0 2.3 521 1257

32 3 6.3 17 4.0 2.3 522 1258
4 6.3 17 4.0 2.3 522 1258
2 6.0 15 4.4 2.2 551 1307

16 3 6.5 16 4.5 2.4 554 1313
4 6.5 16 4.5 2.4 555 1313
2 6.0 12 5.4 1.8 614 1407
3 6.2 12 5.6 1.9 639 1431

8 4 6.2 12 5.6 1.9 643 1433
5 6.2 12 5.6 1.9 643 1433
6 6.2 12 5.6 1.9 643 1434
2 6.3 11 6.7 1.9 744 1635
3 6.9 9 7.3 1.9 834 1739
4 6.9 9 7.6 1.9 857 1765

4 5 6.8 9 7.6 1.9 863 1771
6 6.8 9 7.6 1.9 864 1772
7 6.8 9 7.6 1.9 865 1772
8 6.8 9 7.6 1.9 865 1772
2 6.2 14 6.6 3.8 1092 2020
3 6.0 11 9.2 3.3 1502 2453
4 6.2 9 10.9 3.1 1741 2672
5 6.5 8 11.6 2.9 1872 2782
6 6.3 7 12.1 2.7 1946 2838

2 7 6.6 7 12.4 2.7 1990 2866
8 6.8 7 12.8 2.7 2014 2880
9 6.9 7 13.0 2.7 2028 2888
10 6.0 6 13.3 2.4 2036 2892
11 6.0 6 13.5 2.4 2041 2894
12 6.0 6 13.5 2.4 2043 2896

ε levels Digits Cycles Init. Solve
∑
|A|

∑
|U |

10−2 1 6.1 26 2.8 2.0 493 1213
10−6 1 7.0 3 131.0 1.4 493 28573
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and several values of levels. For a three dimensional problem, ρ = 8 roughly
corresponds to the case of uniform refinement in the case of classical multigrid
methods. For comparative purposes, we also present data for the case of 1 level
and ε = 10−2, 10−6; we were unable to compute the case ε ≈ 0 due to the
very large storage requirements for the triangular factors. Here we see behavior
similar to the two dimensional case, although generally there is much more fill-in
for an equivalent choice of ε.

In our final series of tests, we study the convergence of the method for a suite
of test problems generated from the finite element code PLTMG [24]. These
example problems were presented in our earlier work [28], where a more complete
description of the problems, as well as numerical results for our hierarchical basis
multigraph method and the classical AMG algorithm of Ruge and Stüben [4],
can be found. As a group, the problems feature highly nonuniform, adaptively
generated meshes, relatively complicated geometry, and a variety of differential
operators. For each test case, both the sparse matrix and the right-hand side
were saved in a file to serve as input for the iterative solvers. A short description
of each test problem is given below.

Problem Superior. This problem is a simple Poisson equation

−∆u = 1

with homogeneous Dirichlet boundary conditions on a domain in the shape of
Lake Superior. This is the classical problem on a fairly complicated domain.
The solution is generally very smooth but has some boundary singularities.

Problem Hole. This problem features discontinuous, anisotropic coefficients.
The overall domain is the region between two concentric circles, but this domain
is divided into three subregions. On the inner region, the problem is

−δ∆u = 0

with δ = 10−2. In the middle region, the equation is

−∆u = 1,

and in the outer region the equation is

−uxx − δuyy = 1.

Homogeneous Dirichlet boundary conditions are imposed on the inner (hole)
boundary, homogeneous Neumann conditions on the outer boundary, and the
natural continuity conditions on the internal interfaces. While the solution is
also relatively smooth, singularities exist at the internal interfaces.

Problem Texas. This is an indefinite Helmholtz equation

−∆u− 2u = 1

posed in a region shaped like the state of Texas. Homogeneous Dirichlet bound-
ary conditions are imposed. The length scales of this domain are roughly 16×16,
so this problem is fairly indefinite.
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Problem UCSD. This is a simple constant coefficient convection-diffusion
equation

−∇ · (∇u + βu) = 1,

β = (0, 105)T posed on a domain in the shape of the UCSD logo. Homogeneous
Dirichlet boundary conditions are imposed. Boundary layers are formed at the
bottom of the region and the top of various obstacles.

Problems Jcn 0 and Jcn 180. The next two problems are solutions of the
current continuity equation taken from semiconductor device modeling. This
equation is a convection-diffusion equation of the form

−∇ · (∇u + βu) = 0,

β = 0 in most of the rectangular domain. However, in a curved band in the
interior of the domain, |β| ≈ 104 and is directed radially. Dirichlet boundary
conditions u = 10−5 and u = 1010 are imposed along the bottom boundary and
along a short segment on the upper left boundary, respectively. Homogeneous
Neumann boundary conditions are specified elsewhere. The solutions vary ex-
ponentially across the domain which is typical of semiconductor problems.

In the first problem, Jcn 0, the convective term is chosen so the device
is forward biased. In this case, a sharp internal layer develops along the top
interface boundary. In the second problem, Jcn 180, the sign of the convective
term is reversed, resulting in two sharp internal layers along both interface
boundaries.

We summarize the results in Table 4. As before, perhaps the most impor-
tant point is that the method solved all of the problems. While convergence
rates are not independent of h, once again the growth appears to be at worst
logarithmic. We did not attempt to optimize the rate of convergence by varying
the parameters. We took ρ = 4 for all problems and chose the drop tolerance
as in [1] to allow the tables to be comparable. In [1], ε was chosen to obtain
similar numbers of cycles for all problems, and this seems to also be true in the
present case.
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