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Abstract. We describe a domain decomposition (DD) algorithm for use in the parallel adaptive
meshing paradigm of Bank and Holst [3, 4]. Our algorithm has low communication, makes extensive
use of existing sequential solvers, and exploits in several important ways data generated as part of
the adaptive meshing paradigm. Numerical examples illustrate the effectiveness of the procedure.

Key words. Domain decomposition, Bank–Holst algorithm, parallel adaptive grid generation.

AMS subject classifications. 65N50, 65N30

1. Introduction. In this work, we describe a domain decomposition (DD) al-
gorithm for use in the parallel adaptive meshing paradigm described in [3, 4]. The
Bank-Holst paradigm provides a general approach to parallel adaptive meshing in
which communication costs are kept low, and where sequential adaptive software
(such as the software package pltmg used in this work) can be employed without
extensive recoding. This approach has three main components:

Step 1: Load Balancing. We solve a small problem on a coarse mesh, and use a
posteriori error estimates to partition the mesh. Each subregion has approx-
imately the same error, although subregions may vary considerably in terms
of numbers of elements or gridpoints.

Step 2: Adaptive Meshing. Each processor is provided the complete coarse mesh
and instructed to sequentially solve the entire problem, with the stipulation
that its adaptive refinement should be limited largely to its own partition.
The target number of elements and grid points for each problem is the same.
Near the end of this step, the mesh is regularized such that the global mesh
described in Step 3 will be conforming.

Step 3: DD Solve. A final mesh is computed using the union of the refined parti-
tions provided by each processor. A final solution computed using a domain
decomposition or parallel multigrid technique.

With this approach, the load balancing problem is reduced to the numerical solution
of a small elliptic problem on a single processor, using a sequential adaptive solver
such as pltmg, without requiring any modifications to the sequential solver. The
bulk of the calculation in the adaptive meshing step also takes place independently
on each processor and can also be performed with a sequential solver with no mod-
ifications necessary for communication. The only parts of the calculation requiring
communication are (1) the initial fan-out of the mesh distribution to the processors
at the beginning of adaptive meshing step, once the decomposition is determined by
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the error estimator in load balancing; (2) the mesh regularization, requiring commu-
nication to produce a global conforming mesh in DD solve step; and (3) the final
solution phase, that might require local communication (e.g., boundary exchanges).
In some circumstances, it might be useful to avoid the initial fan-out communication
step by allowing all processors (which are otherwise idle) to simultaneously compute
the coarse solution and load balance in Step 1. Note that a good initial guess for the
DD solve is provided by the adaptive meshing step by taking the solution from each
subregion restricted to its partition.

A more complete discussion of the overall paradigm as well as some numerical
illustrations can be found in [3, 4]. In Mitchell [29], a parallel adaptive procedure
similar to Step 2 of our procedures is described. See [33, 31, 17, 21] for some other
approaches to parallel adaptive meshing. Our focus in this work is on Step 3 of
the paradigm. Our domain decomposition solver is motivated by the Bank-Holst
paradigm itself, in that it attempts to minimize communication and maximize the
use of existing sequential software. Our algorithm is also designed to exploit as much
as possible the wealth of data related to the solution generated by Step 2 of the
process. For example, our solver uses the final regularized adaptive mesh on each
subdomain as the basis of the parallel solve, and the linear systems solved on each
processor are quite similar (except for the right hand side) to those solved in the final
adaptive step. The sequential multigraph method [8] used by pltmg is used to solve
these linear systems.

Domain decomposition methods are now widely studied. See for example, [20,
19, 22, 23, 24, 16], the survey articles [15, 35, 36] and the book [32]. Our method is
similar to those proposed and analyzed in [5, 6]. In particular, the method analyzed
in [6] was shown to have a rate of convergence that is independent of N , the order of
the global system of equations. However, it can depend on other factors, in particular
the number of processors p. Our method differs from that of [6] in the construction of
the right hand side, and in the solution update, which are non-standard for a domain
decomposition method. Given the generality of the adaptive meshing procedures
in pltmg, we are also unable to exactly satisfy the assumptions on the mesh used
in the convergence analysis in [6]. Intuitively, we expect our right hand side and
update to improve upon the standard algorithm, and while we do not strictly satisfy
the assumptions, we do largely satisfy them in spirit. Thus we expect our method
to exhibit convergence rates almost independent of N , and we have observed this
behavior in practice. However, there is some dependence on p, although this seems to
be at worst logarithmic. See Mitchell [28, 30, 29] for an alternative approach based
on a parallel multigrid solver.

We will informally refer to a processor’s “fine grid” as the partition that is as-
sociated with the processor (Ωi), despite the fact that it may not be uniformly fine.
Similarly its “coarse grid” (on Ω − Ωi) refers to the remainder of the domain, even
though parts of the mesh outside of Ωi are not uniformly coarse. As mentioned above,
in the adaptive meshing paradigm, Step 2 of the process typically generates a very
good initial guess for the solver in Step 3, namely an approximate solution composed
of the fine grid parts of the solution generated by each of the processors. Along
subdomain interfaces, this approximate solution in general will be multi-valued, even
though the global mesh is conforming. In some sense the goal of the domain decom-
position solver in this context is to resolve the discontinuities in this approximate
solution. We also note that the initial guess already satisfies equations corresponding
to interior mesh points in the global system (assuming the sequential solver in Step 2
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of the paradigm did a good job of solving the linear systems generated in that phase
of the algorithm). Thus in the global system of equations, we expect the residuals
to generally be small everywhere except possibly for gridpoints associated with the
system of subdomain interfaces.

In our algorithm, each processor contributes equations and unknowns correspond-
ing to all its fine mesh points. From this we formally construct an expanded linear
system. Interface unknowns corresponding to the same interface grid point have conti-
nuity enforced via a Lagrange multiplier. In this respect, the expanded global system
can be viewed as arising from a special mortar element formulation [13, 12, 14, 34, 25]
in which the mortar element space consists of Dirac δ functions or scaled hat func-
tions centered at the interface nodes. Once this enlarged system is constructed, the
Lagrange multipliers and duplicate unknowns are formally eliminated via block Gaus-
sian elimination. The resulting Schur complement matrix is just the regular stiffness
matrix for the conforming finite element space. The right hand side contains the
conforming finite element right hand side, but it also has some “jump” terms that
penalize the discontinuities along the interface. The details of this algorithm are given
in Section 3.

The remainder of this manuscript is organized as follows. In Section 2, we discuss
the interaction of the domain decomposition solver and adaptive mesh generation.
In particular, we discuss small modifications of the refinement criteria that take into
account the assumptions regarding the mesh given in [6]. We also describe some
details of the global mesh regularization procedure that have an impact on the do-
main decomposition solver. In Section 3 we derive the domain decomposition solver.
Our notation is mainly that of linear algebra, although most equations have analogs
that could be expressed using finite element notation. In Section 4, we present some
numerical examples. These problems are chosen to reflect a variety of applications
that involve the adaptive solution of elliptic partial differential equations. The com-
plete adaptive paradigm has been implemented in the pltmg package, using mpi for
communication.

The discussion in this manuscript is restricted to two dimensions. This is done
mainly for convenience. The basic idea of the Bank-Holst paradigm has been ap-
plied equally well in three dimensions [3, 4]. The domain decomposition procedure
described here is largely algebraic, and thus formally can be applied to three dimen-
sional problems. However, one aspect that is specific to two dimensions is the mesh
regularization procedure described in Section 2. For adaptive procedures employing
a refined element tree data structure, mesh regularization in any space dimension
is likely to be straightforward, since one can compare trees generated on each pro-
cessor and adjust as necessary to insure a global conforming mesh. Without such a
data structure, as in the pltmg code used here, a more complicated regularization
procedures such as the one described in Section 2 is needed. In three dimensions,
the mesh regularization approach described here is problematic if triangular faces on
the interface could be refined in incompatible ways on different processors. In such
cases, our mortar element formulation can be generalized, and a DD solver based on
the principles described here can be developed. See Lu [27] for some work in this
direction.

2. Parallel Adaptive Methods and Domain Decomposition. There are
two aspects of the adaptive meshing paradigm that have significant consequences for
our domain decomposition algorithm. First, our algorithm for grading the mesh away
from the refined subdomain for a given processor is described. Second, the method
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used to make the global mesh conforming is given. Suppose the global domain Ω is
partitioned into p nonoverlapping subdomains Ωi, 1 ≤ i ≤ p, such that

Ω = ∪i Ωi,

Ωi ∩ Ωj = ∅, i 6= j.

Processor i receives all of Ω, but its adaptive refinement is confined mainly to Ωi.
However, some elements outside of Ωi must also be refined, in order to grade the mesh
between small elements in Ωi and larger elements elsewhere in Ω while simultaneously
controlling the shape regularity of the elements.

In the initial implementation of our algorithm, we simply multiplied a posteriori
error estimates for elements outside of Ωi by 10−6 so that the sequential adaptive re-
finement algorithms would be unlikely to choose those elements for refinement on the
basis of their error estimate. Some elements not in Ωi but near ∂Ωi are also refined
in order to insure a shape regular and conforming mesh on each processor. It seems
certain that this initial suggestion, although quite simple and easy to implement, is
probably not an optimal strategy. The issue of grading the mesh outside of Ωi is
presently an active area of research that will be reported elsewhere. Here we just
summarize the main issues and how they influence our domain decomposition algo-
rithm. We then describe the particular algorithm used in the experiments presented
here.

Clearly, it is advantageous on processor i to confine the refinement as much as
possible to Ωi. Mesh points in Ωi become mesh points in the final refined global
conforming mesh and contribute in a direct way to the overall global solution. On the
other hand, mesh points outside of Ωi do not contribute directly to the overall global
solution. To some extent, they can be viewed as a necessary overhead expense in the
paradigm. Informally, we substitute local computation on these extra mesh points for
interprocessor communication that would otherwise be required.

It is also important to note that the goal of Step 2 of the paradigm is adap-
tive mesh generation, not the computation of an accurate solution. Clearly adaptive
meshing and solution accuracy are related, but it is not necessary to have an accurate
solution to determine a good adaptive mesh. Indeed, it is the ability to generate good
meshes from relatively inaccurate solutions that explains the success of many adap-
tive methods; see [9, 10] for an analysis and numerical examples of the a posteriori
error estimation procedure used in this work. On the other hand, it is also clear that
data outside of Ωi does influence the solution within Ωi. It is possible that such in-
fluence could be sufficiently strong to have a significant adverse effect on the adaptive
mesh generation within Ωi if it is not at least partly resolved. Potential examples
are strong point singularities outside of Ωi, or upstream flow in the case of PDE’s
involving convection. While it is not necessary for each processor to completely re-
solve such behavior in order to create a good mesh on its own subregion, it does seem
important that each processor determine the approximate influence on the solution
in its subregion, and then if necessary resolve it to an appropriate level.

With respect to our domain decomposition solver, the mesh outside of Ωi plays an
important role. Unlike typical domain decomposition algorithms, there is no special
global coarse mesh subspace in our procedure. At each iteration, each processor solves
a local problem on its final mesh on all of Ω, refined in Ωi and coarse elsewhere. In
effect, each processor has its own “built-in” global coarse mesh, which replaces the
global coarse mesh found in other solvers. Thus the mesh outside of Ωi should be
sufficiently fine to play this role in our solver; as a practical matter, we expect that
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the meshes generated in Step 1 of the paradigm will be more than adequate for this
purpose.

Another important point is related to the refinement of the mesh outside of Ωi

but very close to ∂Ωi. For example, in [5, 6], it is assumed that the refinement is
extended to all elements with one or more vertices lying on ∂Ωi. Informally, one
purpose of such assumptions is to insure that stiffness matrix elements corresponding
to interface points on ∂Ωi are the same as those in the global stiffness matrix of the
overall global refined mesh. It is easy to see that if all elements having one or more
vertices on ∂Ωi correspond exactly to the global refined mesh, then this will be true.
Thus there is incentive to extend the refined zone on processor i one or two layers
outside ∂Ωi to accommodate this aspect of the domain decomposition algorithm.

Of course some refinement of this type happens naturally in the process of grading
element size in a controlled fashion in the transition between the small elements in Ωi

and larger elements elsewhere in Ω, but it is still useful to consider this as a separate
point. This is especially true near so-called “cross points,” mesh points lying on the
boundaries of three or more subdomains. From the viewpoint of adaptive refinement
on processor i, the main consideration is whether a given point is in Ωi; parts of
the global system of interfaces that do not include ∂Ωi are of little significance. On
the other hand, the entire global system of interfaces is important for the domain
decomposition solver, and among interface points, cross points often require special
attention. In our algorithm, cross points formally pose no special problems, but we
have observed empirically that having the local mesh on processor i and the global
refined mesh coincide as much as possible in the vicinity of cross points lying on ∂Ωi

is more important than for other interface points on ∂Ωi, in terms of the impact on
the convergence rate of the domain decomposition algorithm.

As we see from the above discussion, there are many objectives and issues to be
considered and balanced in determining the nature of the coarse mesh outside of Ωi

on processor i. Here we address this problem with a procedure that multiplies the
a posteriori error estimate for an element t outside of Ωi by a factor θt, 0 < θt ≤ 1.
This is the same as our original suggestion if we chose θt = 10−6 for all t outside of
Ωi. In the present situation, however, we want θt = 1 for elements near ∂Ωi, and then
to have θt become small quickly but smoothly as the distance from Ωi increases. The
choice of θt also reflects the influence from the behavior of the solution outside of Ωi.

In our algorithm, for t 6∈ Ωi, θt is generally given by

θt =
ωt

2dt
, (2.1)

where ωt comes from an “influence function” for Ωi and dt is a measure of distance
from Ωi. We consider each of these factors separately.

Assume that the bilinear form for the PDE (or its linearization) is given by a(u, v).
Let Vi denote the space of continuous piecewise linear polynomials associated with
the existing global mesh on processor i (fine on Ωi and coarse elsewhere). Let

Vi
0 = {φ ∈ Vi|φ(x) = 0 for all x ∈ Ωi},
Vi

1 = {φ ∈ Vi|φ(x) = 1 for all x ∈ Ωi}.

We consider the local dual problem: find w ∈ Vi
1 such that

a(φ,w) = 0 (2.2)
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for all φ ∈ Vi
0. Intuitively, w = 1 on Ωi, and for x 6∈ Ωi, w(x) should give some

indication of the influence of the solution near x on the solution in Ωi. Generally,
we expect w to decay towards zero as the distance to Ωi increases, but the specific
behavior depends on the details of the PDE and the physical location of Ωi within Ω.
We define ωt by

ωt = min(1,max
x∈t
|w(x)|). (2.3)

Since w ∈ Vi
1, ωt is determined by examining only values at the vertices, and trivially

ωt = 1 for t ∈ Ωi.
In terms of linear algebra, problem (2.2) involves the solution of a linear system

involving a submatrix of the stiffness matrix. Assume we use the standard nodal basis
for Vi. Then the stiffness matrix A has the block 2× 2 form

A =
(

Aff Afc

Acf Acc

)
where Aff corresponds to mesh points in Ωi and Acc corresponds to mesh points
strictly outside of Ωi. As the adaptive refinement proceeds, we expect that the order
of Aff will be much larger than that of Acc. The linear system corresponding to (2.2)
is

At
ccW + At

fce = 0

where superscript t stands for transpose, e is the vector of ones, and W is a vector of
values of w at the coarse mesh vertices. This linear system is relatively inexpensive
to assemble and solve, since we can leverage much of the effort used to assemble and
solve linear systems involving the matrix A, required for computing the finite element
solution.

We now consider the construction of the metric dt. Informally, if the elements in
Ωi with vertices lying on ∂Ωi are of size h, we want the first few layers of elements
outside of Ωi to also be of size h, and then the elements should grow in size to approach
the large elements in most of Ω. For this reason, defining dt in terms of some simple
physical Euclidean metric would be undesirable. Rather, we need to define distances
relative to the local value of h. A simple and efficient way to do this, assuming we
control shape regularity of the elements, is to use a metric based on the triangulation
itself. In particular, we can inductively define distances δ(v) for all vertices v in the
mesh as follows. Initially all vertices have δ(v) undefined. Then for each vertex v ∈ Ωi,
we set δ(v) = 0. Any vertex on any interface edge associated with a cross point on
∂Ωi also has δ(v) = 0 regardless of whether v ∈ Ωi; the goal is to control coarse grid
refinement more carefully in the vicinity of cross points lying on ∂Ωi. We then make a
breadth-first search of the graph corresponding to the mesh, starting from all vertices
with δ(v) = 0. All unmarked vertices v′ connected by an element edge to a vertex
with δ(v) = 0 are assigned δ(v′) = 1. Inductively, all unmarked vertices v′ connected
to a vertex with δ(v) = k are assigned δ(v′) = k + 1. Generally δ(v) measures the
shortest path in the graph from the vertex v′ to any vertex with δ(v) = 0. The value
of δ(v) is computed for each vertex at the beginning of each major adaptive step. δ(v)
for any fixed vertex may increase at each major adaptive step as the mesh becomes
more refined and its path length increases. This provides a smooth mesh-dependent
behavior that is desirable to control refinement outside of Ωi. For completeness, we



A DOMAIN DECOMPOSITION ALGORITHM 7

remark that pltmg also has options for mesh unrefinement, which could cause δ(v)
to decrease, and moving mesh points, which leaves δ(v) invariant.

Let a given element t have vertices vk, 1 ≤ k ≤ 3. Then

dt = min
1≤k≤3

δ(vk). (2.4)

Finally for all elements with dt ≤ 1 we set θt = 1; otherwise, we define θt using
(2.1). The goal of this weighting strategy is to produce a mesh where most of the
refinement occurs in Ωi, but to allow modest refinement as necessary outside of Ωi

to meet the multiple goals of the adaptive procedure itself, and the global domain
decomposition solver used in Step 3 of the paradigm. If pltmg used a refined element
tree data structure (as it did in earlier versions) [7, 11], then forcing specified levels
of refinement in various parts of the domain would be quite simple. On the other
hand, we believe the greater flexibility afforded by less structured and more general
adaptive algorithms in the present version of pltmg more than compensate for the
increased complexity of certain computations.

We now turn to the mesh regularization procedure, which produces the global
conforming refined mesh used in the domain decomposition solver. In pltmg, mesh
refinement on interface edges is restricted to simple bisection, although our adaptive
refinement procedure generally allows the mesh points to move. Our mesh regulariza-
tion procedure has two substeps. Each step begins with interprocessor communication,
where processor i exchanges information describing the interface edges on ∂Ωi. Each
processor will ultimately create a data structure describing the complete system of
interface edges in the global refined mesh. After the first communication step, edges
in this global interface system will not necessarily match if there is more refinement
in one side of the interface (see Figure 2.1, left).
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Fig. 2.1. The coarse side of a non matching interface (left) is refined to make the global mesh
conforming (right).

Using information from its neighbors, each processor creates a mapping of its
interface edges (those on ∂Ωi) to those of its neighbors. Less refined edges on its
side of the interface are refined as necessary to be compatible with the neighbor.
Less refined edges on the neighbor’s side are refined by the neighbor. The boundary
exchange and edge matching procedures are repeated, and this time all processors will
succeed in matching all their interface edges to those of its neighbors (see Figure 2.1,
right).

Following this second boundary exchange, each processor examines its interface
system for all local interface edges not on ∂Ωi. These edges play no role at all in
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the final global conforming mesh, but they do play an important role in the domain
decomposition solver. In particular, if some part of the local interface system on
processor i is more refined than the global interface system, then those edges are
coarsened to to make it compatible with the global interface system. Since all interface
edges outside ∂Ωi lie in the (assumed) coarsely refined part of Ω on processor i, the
occurrence of such inconsistencies is rare. Nonetheless they do occur, and our domain
decomposition solver assumes that vertices in the local interface system on processor i
are a subset of those in the global conforming refined mesh (the sets of course coincide
exactly on ∂Ωi). We also examine interface edges at cross points lying on ∂Ωi. We
require all such edges correspond exactly to the global interface system. Edges lying
on ∂Ωi already satisfy this criterion, but edges at cross points on ∂Ωi but not on ∂Ωi

may need to be refined. However, given the special definition of δ(v) used near such
points, it is expected that the adaptive procedure itself makes violations rather rare.
We note that both refinement and unrefinement of edges in the coarse part of the
interface system can be done without communication with other processors.

Finally each processor constructs a mapping of all vertices on its local interface
system to corresponding vertices in the global interface system. This is done with-
out further interprocessor communication; it is deduced from edge matching in the
global interface system following the second communication step. The resulting data
structure forms the basis of the interprocessor communication steps in the domain
decomposition solver.

3. A Domain Decomposition Method. In this section we present a domain
decomposition algorithm for solving the global conforming linear systems arising in
Step 3 of the Bank-Holst paradigm. In many respects, this algorithm is motivated by
and similar to the domain decomposition algorithms described in [5, 6]. Consistent
with our overall philosophy, we wish to minimize communication and maximize the
use of existing sequential software.

Formally, our domain decomposition procedure is an additive Schwartz method
for solving the global saddle point system based on a special mortar element discretiza-
tion. We construct local saddle point systems on each processor that precondition this
global system. Instead of solving these local saddle point systems, we eliminate the
Lagrange multipliers from each local system, producing linear systems with matrices
similar to those assembled during the final adaptive refinement step. It is these linear
systems that are solved in parallel. From these solutions, the fine mesh points of
the local solutions are collected to form a global approximate solution of the original
saddle system.

To simplify our discussion, initially we restrict attention to the case of just two
subdomains. In our scheme, each subregion contributes equations corresponding to
all fine mesh points, including its interface. Thus in general there will be multiple
unknowns and equations in the global system corresponding to the interface grid
points. This is handled by equality constraints that impose continuity at all mesh
points on the interface. The result is a mortar-element like formulation, using Dirac
δ functions for the mortar element space. With a proper ordering of unknowns, the
global system of equations has the block 5× 5 form
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A11 A1γ 0 0 0
Aγ1 Aγγ 0 0 I
0 0 Aνν Aν2 −I
0 0 A2ν A22 0
0 I −I 0 0




δU1

δUγ

δUν

δU2

Λ

 =


R1

Rγ

Rν

R2

Uν − Uγ

 . (3.1)

Here A11 and A22 correspond to the fine grid points on processors 1 and 2, re-
spectively, that are not on the interface, while Aγγ and Aνν correspond to interface
points. The fifth block equation imposes continuity, and its corresponding Lagrange
multiplier is Λ. The identity matrix appears because the global fine mesh is conform-
ing. The introduction of the Lagrange multiplier and the saddle point formulation
(3.1) are only for expository purposes; indeed, Λ is never computed or updated.

On processor 1, we develop a similar but “local” saddle point formulation. That
is, the fine mesh subregion on processor 1 is “mortared” to the remaining coarse mesh
on processor 1. This leads to a linear system of the form

A11 A1γ 0 0 0
Aγ1 Aγγ 0 0 I
0 0 Āνν Āν2 −I
0 0 Ā2ν Ā22 0
0 I −I 0 0




δU1

δUγ

δŪν

δŪ2

Λ

 =


R1

Rγ

Rν

0
Uν − Uγ

 , (3.2)

where quantities with a bar (e.g., Ā22) refer to the coarse mesh. A system similar to
(3.2) can be derived for processor 2. With respect to the right-hand-side of (3.2), the
interior residual R1 and the interface residual Rγ are locally computed on processor
1. We obtain the boundary residual Rν , and boundary solution Uν from processor
2; processor 2 in turn must be sent Rγ and Uγ . The residual for the coarse grid
interior points is set to zero. This is both a significant and natural assumption. It
is significant because it avoids the need to obtain R2 via communication, and to
implement a procedure to restrict R2 to the coarse mesh on processor 1. It is natural
because given our initial guess, we anticipate that R1 ≈ 0 and R2 ≈ 0 at all iteration
steps; if this is not the case, we expect that the convergence of the global iteration to
be degraded. We remark that Rγ and Rν are not generally small, but Rγ + Rν → 0
at convergence. The last entry of the residual takes the form Uν −Uγ to indicate that
the computed updates δUγ and δŪν satisfy the equation δUγ − δŪν = Uν − Uγ .

As with the global formulation (3.1), equation (3.2) is introduced mainly for
exposition. The goal of the calculation on processor 1 is to compute the updates δU1

and δUγ , that contribute to the global conforming solution. To this end, we formally
reorder (3.2) as

0 −I 0 I 0
−I Āνν 0 0 Āν2

0 0 A11 A1γ 0
I 0 Aγ1 Aγγ 0
0 Ā2ν 0 0 Ā22




Λ
δŪν

δU1

δUγ

δŪ2

 =


Uν − Uγ

Rν

R1

Rγ

0

 . (3.3)

Block elimination of the Lagrange multiplier Λ and δŪν in (3.3) leads to the block
3× 3 Schur complement systemA11 A1γ 0

Aγ1 Aγγ + Āνν Āν2

0 Ā2ν Ā22

 δU1

δUγ

δŪ2

 =

 R1

Rγ + Rν + Āνν(Uν − Uγ)
Ā2ν(Uν − Uγ)

 . (3.4)
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The system matrix in (3.4) is the matrix used in the final adaptive refinement step
on processor 1 (with possible modifications due to global fine mesh regularization).
Thus the final matrix and mesh from Step 2 of the paradigm can be reused once again
in the domain decomposition solver. In a sense Lagrange multipliers are introduced
and then eliminated as an algebraic device to derive the right-hand-side of (3.4). Other
than the right-hand-side, our algorithm is very similar to those analyzed in [5, 6].
To summarize, a single domain decomposition/multigraph iteration on processor 1
consists of:

1. locally compute R1 and Rγ .
2. exchange boundary data (send Rγ and Uγ ; receive Rν and Uν).
3. locally compute the right-hand-side of (3.4).
4. locally solve (3.4) via the multigraph iteration of [8].
5. update U1 and Uγ using δU1 and δUγ .

We remark that any sequential solver (including a direct method) may be used
to solve the local problems (3.4). The multigraph method used in pltmg was chosen
because it is robust for a wide class of differential equations, can handle the highly
nonuniform meshes generated by our procedure, and empirically is observed to be
nearly optimal in its complexity [8].

In its most simple form, the update step could be U1 ← U1 + δU1, Uγ ← Uγ +
δUγ , which requires no communication. Standard acceleration procedures typically
require some global communication to compute parameters. We remark that the
global iteration matrix corresponding to this formulation is not symmetric, even if
all local system matrices are symmetric. Thus conjugant gradient acceleration can
not be used, although GMRES could be applied. In pltmg, our solver is normally
used in the context of an approximate Newton method (using just one DD iteration
at each Newton step). A Newton line search technique that requires some global
communication is used for the update step. In particular, in addition to computing
several global norms and inner products, the line search produces the output for steps
1–3 above for the next Newton iteration.

When there are p > 2 subdomains, our algorithm remains much the same in
outlook, but the description in matrix notation becomes much more complicated. We
consider first the global system of equations. As before, each subregion contributes
equations and unknowns corresponding to all its fine mesh points, including those on
its interface. For interface points contained in two subdomains, typically the most
common case, we have one constraint equation that equates solution values on both
sides of the interface. At cross points contained in ` > 2 subregions, we have ` − 1
constraints that equate the ` different solution values associated with that point, e.g.,
Ui1 = Ui2 = · · · = Ui`

. For each interface point with ` ≥ 2, we (arbitrarily) designate
one of the values as the master value Uim , and the remaining slave values are given
by Uis

= Uim
, 1 ≤ s ≤ `, s 6= m.

We now consider the block 4× 4 global saddle point problem given by
Ass Asm Asi I
Ams Amm Ami −Zt

Ais Aim Aii 0
I −Z 0 0




δUs

δUm

δUi

Λ

 =


Rs

Rm

Ri

ZUm − Us

 . (3.5)

Here Us refer to slave interface variables, Um to master interface variables Ui to
subregion interior variables and Λ to the Lagrange multipliers. The matrix Aii can be
ordered by subregion and will be block diagonal for such an ordering. Since several
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slave variables can be equated to a single master variable at cross points, the matrix
Z will not generally be an identity matrix; however, each row of Z will be zero except
for a single entry of 1.0 corresponding to a master variable.

As in the case of two subregions, we reorder (3.5) as
Ass I Asm Asi

I 0 −Z 0
Ams −Zt Amm Ami

Ais 0 Aim Aii




δUs

Λ
δUm

δUi

 =


Rs

ZUm − Us

Rm

Ri

 . (3.6)

Block elimination of the slave variables and Lagrange multipliers leads to the Schur
complement system(

Amm + AmsZ + ZtAsm + ZtAssZ Ami + ZtAsi

Aim + AisZ Aii

) (
δUm

δUi

)
=(

Rm + ZtRs − (Ams + ZtAss)(ZUm − Us)
Ri −Ais(ZUm − Us)

)
. (3.7)

The matrix appearing on the left-hand-side of (3.7) is the global stiffness matrix
corresponding to the conforming finite element approximation. The term Rm + ZtRs

appearing on the right-hand-side corresponds to the usual residual for the conforming
finite element approximation, and is independent of the choice of slave and master
variables. However, the “jump” terms involving ZUm − Us on the right-hand-side of
(3.7) do depend on the choice of master and slave variables.

We now consider the situation on a single processor, which we denote as processor
k, 1 ≤ k ≤ p. The problem solved on processor k again involves all p subregions.
Subregion k has been refined, and its mesh corresponds to subregion k of the global
conforming mesh. The remaining p−1 subregions on processor k typically have much
coarser meshes than the global mesh. The saddle point problem of processor k has
the form 

Āss Āsm Āsi I
Āms Āmm Āmi −Z̄t

Āis Āim Āii 0
I −Z̄ 0 0




δŪs

δŪm

δŪi

Λ

 =


R̄s

R̄m

R̄i

Z̄Ūm − Ūs

 . (3.8)

Here it is notationally cumbersome to distinguish between subregion k and the other
subregions, so we simply use Āii to refer to all the interior mesh points for all the
regions. The part of Āii arising from region k is exactly the same as in the global
saddle point problem (3.5). Since the remaining parts correspond to coarse meshes,
the overall order of Āii is typically much smaller than Aii. The residual R̄i appearing
on the right-hand-side of (3.8) is similar to the two subregion case; that is, for points
lying in subregion k, it is the residual for the corresponding point in the global saddle
point problem, and can be computed without communication on processor k. For
points in the interior of the other coarser subregions, we set the residual to zero
as in the two subdomain case. As before, this avoids communication and the need
to develop an algorithm to restrict the global fine grid interior residuals to coarser
meshes.

The interface equations are more interesting. The parts of the interface that in-
volve subregion k correspond exactly to the global saddle point problem. The interface
unknowns associated with subregion k are all designated as the master unknowns for
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their mesh points, since they must be computed and updated as part of the solution
process on processor k. The remaining interface points, lying on the interface of two
or more subregions other than k form a subset of the interface points of the global
system. For these points we define the master and slave unknowns in an arbitrary
fashion (in our code, we actually use an average; see below). The residuals R̄m and
R̄s thus contain a subset of the elements in Rs and Rm in (3.5). Also, the interface
solution vectors Ūm and Ūs contain of subset of the values in Us and Um in (3.5).
The parts of Rm and Rs corresponding to subregion k are computed on processor k,
and processor k sends these residuals and the parts of Um and Us corresponding to
subregion k to all other processors. In turn, processor k receives all other fine grid
interface residuals and interface solution values from all other processors. This is ac-
complished in an all gather exchange in mpi. Following this exchange, each processor
has all the values in Rs, Rm, Us and Um, and from this information can extract the
subset of information needed to form R̄s, R̄m, Ūs and Ūm.

We note that the support of test functions in the coarse parts of the interface might
be much larger than the corresponding fine grid basis functions used in computing
the interface residuals. Thus simply using residuals computed using fine grid test
functions for the coarse grid interface is formally inconsistent. On the other hand,
our goal for the coarse grid interface points is only to provide some approximation of
the fine grid right-hand-side in (3.5). The solution on processor k is used to update
only unknowns corresponding to subregion k, and for these points the right-hand
side is computed correctly. The less accurate approximation used elsewhere, similar
to setting the residual to zero for coarse grid interior points, has proved sufficiently
accurate in terms of producing accurate updates in the fine mesh region.

Block elimination of the slave variables and Lagrange multipliers in (3.8) leads to
the Schur complement system(

Āmm + ĀmsZ̄ + Z̄tĀsm + Z̄tĀssZ̄ Āmi + Z̄tĀsi

Āim + ĀisZ̄ Āii

) (
δŪm

δŪi

)
=(

R̄m + Z̄tR̄s − (Āms + Z̄tĀss)(Z̄Ūm − Ūs)
R̄i − Āis(Z̄Ūm − Ūs)

)
. (3.9)

As in the two subregion case, the matrix appearing on the left hand side of (3.9) is
the matrix used in the final adaptive refinement step on processor k, with possible
modifications due to global fine mesh regularization. The right-hand-side can be
computed once the exchange of interface data is complete. As in the two processor
case, the parts of δŪm and δŪi that correspond to subregion k are extracted from the
solution of (3.9) and used to update the global solution.

We note that the choice of master and slave unknowns for points on the coarse
parts of the interface on processor k is arbitrary. To resolve this ambiguity, in practice
we take the master variable to be the average of all values that correspond to the
interface point:

Uim
≡ 1

`

∑̀
s=1

Uis .

This is easy to do algorithmically, but awkward to describe in matrix notation. The
effect is that the jump terms on the right-hand-side of (3.9) corresponding to coarse
interface points are averaged over all choices of master variable. However, recall that
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for the interface points for subregion k, the master variable is always chosen to be the
value from subregion k.

To summarize, a single domain decomposition/multigraph iteration on processor
k consists of:

1. locally compute R̄i and parts of Rs and Rm associated with subregion k.
2. exchange boundary data, obtaining the complete fine mesh interface vectors

Rm, Rs, Um and Us.
3. locally compute the right-hand-side of (3.9) (using averages as described

above).
4. locally solve (3.9) via the multigraph iteration.
5. update the fine grid solution for subregion k using the appropriate parts of

δŪi and δŪm.
We close this section with some discussion of convergence criteria. This is a

delicate issue, and there are several points to consider. First, in each DD iteration
each processor (simultaneously) solves a problem on its final adaptive mesh. Although
these problems may be small in comparison with the linear system for the global fine
mesh, they are still the largest problems solved on each processor, so every iteration
will require a large fraction of the time used in Step 2 of the paradigm (since a large
fraction of the cost in the entire adaptive procedure is due to the last refinement
step in which the largest problem is assembled and solved). If a large number of
iterations are used, then Step 3 of the paradigm can easily dominate the cost of
the entire computation. Second, typically we have a very good initial guess; thus
we expect the residuals to be generally small at all iterations; indeed much of the
communication efficiency in the procedure relies on approximating the residual by
zero for coarse mesh interior points. Third, the goal of the computation is to compute
an approximate solution to the PDE, not an approximate solution to the linear system
(of course the two are clearly related). Thus we should try to stop the iteration when
we have a sufficiently accurate approximation to the PDE. Finally, we are likely to be
dealing with very nonuniform meshes, and the norms used in the convergence criterion
should take this into account.

We begin with a discussion of norms. Let Gi denote the diagonal entry of the
mass matrix corresponding to vertex i,

Gi = ||φi||2L2 ≡
∫

Ω

φ2
i dx,

where φi is the usual nodal basis function associated with vertex i in the mesh.
Gi = O(h2

i ), where hi is some measure of the size of elements sharing vertex i. Let U
be a grid function; then

||U||2G =
∑

i

U2
i Gi (3.10)

With this weighting, formally ||U||G ∼ ||uh||L2 , where uh is the finite element function
corresponding to the grid function U . Let R be a residual; then

||R||2G−1 =
∑

i

R2
i G

−1
i . (3.11)

With this weighting, intuitively ||R||G−1 looks like ||eh||H2 , where eh is the error in the
finite element solution and H2 is the usual Sobolev space. This must only be formal
since generally eh 6∈ H2.
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Norms are computed with respect to the global fine mesh; each processor com-
putes its contribution to the global norm (the contribution from vertices in Ωi) and
then a communication step is necessary to form the global norm. The main conver-
gence criterion is

||δUk||G
||Uk||G

≤ max
(
||δU0||G
||U0||G

,
||∇eh||L2

||∇uh||L2

)
× 10−1. (3.12)

Here Uk and δUk are the global grid function and update, respectively, at iteration k,
while ||∇eh||L2 and ||∇uh||L2 are the a posteriori error estimate and the initial solution
(corresponding to grid function U0). In words, the iteration stops when the relative
error in the solution is reduced by a factor of ten, or when the relative error in the
solution of the linear system is a smaller by a factor of ten than the error in the PDE
at the beginning of the iteration. The norm ||∇eh||L2 appears instead of, e.g., ||eh||L2

because it arises naturally in the context of a posteriori error estimation and it is the
norm for which the strongest theoretical results are available. On the other hand,
the use of different norms does introduce some inconsistency into (3.12). One could
systematically replace || · ||G with ||∇ · ||L2 at an increased computational cost in order
to resolve the inconsistency should that prove necessary. It created no problems in
the numerical experiments presented in this work. A secondary convergence criterion
is

||Rk||G−1

||R0||G−1
≤ 10−2. (3.13)

In our experiments, (3.12) was always satisfied before (3.13).
Finally, on each processor the multigraph iterative method was used to solve local

problems of the form (3.9). The convergence for the multigraph iteration was

||Rj ||`2
||R0||`2

≤ 10−4. (3.14)

Here Rj
denotes the local residual at multigraph iteration j. The choice of || · ||`2 arose

because the multigraph solver was part of a stand-alone package for solving linear
systems [1] that was incorporated into pltmg. As an algebraic multilevel method, it
had no information about the linear system beyond the matrix and right hand side,
and hence no basis to choose another norm. One could of course provide additional
information and use another norm if necessary. The use of the more stringent tolerance
10−4 in (3.14) was to try to insure that the approximation of the interior residuals
by zero at course grid points remained valid throughout the domain decomposition
iteration.

4. Numerical examples. In this section, we present some numerical results.
Our examples were run on a small linux-based Beowulf cluster, consisting of 16 dual
1800 Athlon-CPU nodes with 2GB of memory each, a dual Athlon file server, and a
100Mbit CISCO 2950G Ethernet switch. This cluster runs the npaci rocks version
of linux (based on RedHat 7.1), and employs mpich1.2.2 as its mpi implementa-
tion. The computational kernels of pltmg are written in fortran; the g77 compiler
(version 2.96) was used in these experiments.

For our first example problem, we consider the simple Poisson equation

−∆u = 1 in Ω,

u = 0 on ∂Ω,
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where Ω is a region in the shape of Lake Superior.
The second example problem is based on the one-dimensional Burger’s equation.

The differential equation is

−ε∆u + uy + uux = 0,

with ε = 10−3. If ε = 0, this is the one dimensional Burger’s equation with y playing
the role of time. The domain Ω is the quarter circle of radius one. Homogeneous
Neumann boundary conditions are applied along the circular arc, while Dirichlet
boundary conditions are specified on the left side (x = 0) and the bottom (y = 0) as

u =


1 x = 0, 0 ≤ y ≤ 1
1 0 ≤ x ≤ .25, y = 0

1.5− 2x .25 ≤ x ≤ .75, y = 0
0 .75 ≤ x ≤ 1, y = 0

.

This combination of boundary conditions gives rise to a solution similar to the so-
called “λ shock” of Burger’s equation. Newton’s method is used to solve the systems
of nonlinear equations. The multigraph method is used to solve the linear systems
arising at each Newton step.

In our third test problem, we solve the linear elliptic problem

−a1uxx − a2uyy − f = 0 in Ω,

(a1ux, a2uy) · n = c− αu on ∂Ω,

where the piecewise constant values of the coefficients are given in Table 4.1. The
domain Ω is shown in Figure 4.1, where the five subregions are denoted by color.
We chose this problem because of its very anisotropic coefficients. The data for
this problem was supplied by Leszek Demkowicz; the problem originated at Sandia
National Laboratories, Albuquerque, New Mexico, and is a model for a battery [18,
26].

Region a1 a2 f side c α
1 25 25 0 left 0 0
2 7 0.8 1 top 1 3
3 5.0 10−4 1 right 2 2
4 0.2 0.2 0 bottom 3 1
5 0.05 0.05 0

Table 4.1
Coefficient definitions.

For our fourth example, we use pltmg to solve the variational inequality

min
u∈K

∫
Ω

|∇u|2 − 2f(x)u dx

where the domain Ω = (0, 1)× (0, 1), and

K =
{

u ∈ H1
0(Ω) : |u| ≤ 1

4
− 1

10
sin(πx1) sin(πx2) for x ∈ Ω

}
,

f(x) = −∆(sin(3πx1) sin(3πx2)).
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Fig. 4.1. Domain for third test example. The tensor product partition is given by
(0, 6.1, 6.5, 8, 8.4)× (0, 0.8, 1.6, 3.6, 12, 18.8, 21.2, 23.2, 24).

In the absence of the obstacle, this is a simple elliptic equation with exact solution
u = sin(3πx1) sin(3πx2). This problem was solved using an interior point method.
In this case, the interior point iteration systematically replaces simple linear system
solves. However, the linear systems for each iteration step of the interior point method
formally have the same structure as the unconstrained elliptic PDE, and are solved
using the multigraph technique. See [2] for details.

The solutions for all test problems are shown in Figure 4.2. These problems were
solved using our adaptive meshing paradigm for various values of p. During Step
1 of the paradigm, we began with an initial triangulation; the size varied between
N = 1685 vertices for the Lake Superior domain to N = 9 vertices for the obstacle
problem. For the first three problems, the initial mesh was generated by pltmg from
a description of the boundary ∂Ω; for the obstacle problem we began with a uniform
3×3 mesh. These meshes were then adaptively refined (on a single processor) to create
a mesh with Nc = 8000 vertices. This mesh was then partitioned into p subregions
(p = 2, 4, 8, 16, 32) using a spectral bisection algorithm. This completed Step 1 of the
paradigm. The load balance for the case p = 32 for each of the examples is shown in
Figure 4.3. The a posteriori error estimation procedure used in pltmg for adaptive
refinement and the load balancing is described in [9, 10].

In Step 2 of the paradigm, the coarse mesh and solution were broadcast to all
processors, and each processor independently continued with the adaptive refinement,
creating an adaptively refined mesh with Np = 100000 vertices, with most of the
refinement concentrated in its own region. Prior to solving the final linear system
with Np = 100000, the global mesh was made conforming as described in Section 2. If
the mesh were made conforming following this last solve, the initial interior residuals
for the domain decomposition solve would generally be larger. (Because pltmg is a



A DOMAIN DECOMPOSITION ALGORITHM 17

Fig. 4.2. Solutions for the test problems. The lines denote the load balance for the case p = 32.

Fig. 4.3. Load balance for the case p = 32. The legend in the upper right on each picture
provides histograms showing the range of numbers of elements and a posterior error estimates for
each region in the global conforming mesh.
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script driven program, this involved interchanging two command lines in the script,
not any change in the program itself.) One could achieve essentially the same result
by solving the local problem again after the global mesh was made conforming, but
this would add significantly to the overall computation time. In Figure 4.4, we show
the mesh density for the global fine mesh in the case p = 32. Since these global
meshes each have several million elements, one can not draw individual elements.
Thus each element is colored by size, and the edges are not drawn, yielding an image
that shows the general refinement pattern. Most important, note that the overall
refinement patterns seem reasonable given the nature of the problems. The shock
in Burger’s equations is highly refined as are the internal layers in the anisotropic
problem. The contact zones in the obstacle problem are quite visible due to high
refinement to resolve the free boundary and relatively low refinement in the centers
of the contact zones. Another point to note is the relative smoothness of the mesh
density across the subdomain interfaces; this is an a posteriori indication that the
load balance computed in Step 1 of the paradigm was good.

Fig. 4.4. Mesh density for global refined mesh for the case p = 32.

In Step 3 of the paradigm, a global system of linear equations of the form (3.5) was
solved using the domain decomposition algorithm described in Section 3. The starting
guess derived from the fine grid parts of the solution provided by the p processors.
For the nonlinear problem (second example) the DD solver was used in a standard
Newton iteration, while for the obstacle problem, it was embedded in an interior point
iteration.

In Figure 4.5, we plot a posterior error estimates computed on the global refined
mesh following Step 3 of the paradigm. Here we see that the overall procedure did a
reasonable job of equilibrating the error. Even for Burger’s equation, the error within
the “λ-shock” is generally equilibrated (reflected by the uniformity of color). Error
outside the shock is of course much smaller, but relatively little refinement was done
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outside of the shock. Here again, these error estimates provide some a posteriori
indication of the quality of the initial load balance.

Fig. 4.5. A posterior error estimates for the global refined mesh for the case p = 32.

In Table 4.2, we provide a summary of the calculation. The global value of N can
be approximated by the formula [3]

N ≈ pNp − (p− 1)Nc, (4.1)

where Nc is the size of the original coarse mesh (Nc = 8000 in this example) and
Np is the target value used by each processor in Step 2 of the parallel adaptive
paradigm (Np = 100000 in this example). As described in Section 2, each processor
refines some elements outside of its subdomain Ωi, to maintain shape regularity in the
transition between small elements within its subregion and generally larger elements
in the remainder of Ω, to control “pollution” and other effects coming from the PDE
outside of Ωi, and to generally satisfy requirements imposed to make the domain
decomposition solver efficient. All of this implies that generally

N < pNp − (p− 1)Nc.

For example, when p = 32, equation (4.1) predicts N ≈ 2952000 when the actual
values ranged between N = 2480831 and N = 1591742. Because of the hyperbolic
nature of the Burger’s equation example, it is not surprising that many processors
did a lot of refinement on the “upstream” side of Ωi in order to produce a good mesh
within Ωi. In Figure 4.6, we illustrate the influence functions for typical subdomains
in the Lake Superior and the Burger’s equation example. In the case of the Poisson
equation, the influence function decays relatively quickly outside of the given region.
In contrast, for Burger’s equation there is little or no decay in the upstream direction.
In the upstream direction, the θt of (2.1) were reduced mainly due to the distance
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factor dt. Thus there was substantially more refinement outside of Ωi for many of the
subregions for this problem, resulting in a the smaller size of the global fine mesh.

Table 4.2
p is the number of processors, N the number of vertices in the global fine mesh, DD the number

of domain decomposition iterations. The breakpoints are accumulated execution times, in seconds.
The range of times for all processors for Step 2 and Step 3 appear in parentheses.

p N DD Breakpoints
End of Step 1 End of Step 2 End of Step 3

Poisson Equation
2 188672 1 2.2 46.6 (43.3-49.8) 54.2 (52.4-56.0)
4 359736 1 2.8 45.4 (43.7-47.4) 54.0 (51.8-58.5)
8 683620 2 3.2 46.5 (44.0-50.7) 62.5 (58.6-69.5)
16 1304403 2 3.5 47.2 (41.5-52.3) 64.1 (58.6-67.6)
32 2480831 3 3.8 50.3 (48.9-54.1) 77.3 (70.8-83.5)

Burger’s Equation
2 188604 2 3.2 50.7 (47.1-54.4) 72.5 (67.5-77.5)
4 351027 2 4.0 55.8 (51.7-59.5) 76.1 (72.1-81.9)
8 623372 2 4.6 63.9 (52.5-75.0) 89.1 (74.2-100.9)
16 1034663 2 5.1 66.3 (55.0-76.3) 90.5 (76.3-102.2)
32 1591742 3 5.5 64.6 (51.4-83.2) 104.8 (81.2-130.0)

Anisotropic Equation
2 190152 1 2.3 42.0 (41.5-42.6) 52.6 (52.4-52.7)
4 351765 1 3.0 43.6 (42.8-44.8) 50.0 (48.1-51.6)
8 662754 1 3.5 43.5 (41.3-46.1) 50.1 (46.3-53.8)
16 1196489 1 3.9 44.1 (40.2-47.7) 50.0 (45.5-56.1)
32 2127832 2 4.3 46.8 (41.9-52.9) 59.8 (53.6-66.9)

Obstacle Problem
2 185972 1 3.5 60.8 (60.6-61.1) 69.6 (67.6-71.6)
4 355046 1 4.1 61.8 (58.3-64.1) 72.6 (69.8-75.2)
8 672753 1 4.6 61.6 (57.2-65.8) 73.1 (70.7-78.1)
16 1292638 1 5.1 61.1 (52.2-71.2) 72.2 (65.4-79.3)
32 2473078 1 5.4 63.0 (58.0-71.8) 75.7 (69.0-85.0)

Fig. 4.6. Typical influence functions for a single subdomain.

In Table 4.2 we see that the number of domain decomposition iterations is quite
stable over the range of this set of problems. The method analyzed in [6] has a rate
of convergence independent on N . Our method differs from that in [6] mainly in the
definition of the right-hand-side and in the update procedures. Also, our method only
approximately satisfies the assumptions in [6] regarding mesh coarsening outside of
Ωi. The convergence rate here appears to show some logarithmic dependence on p,
which is probably due to the increasing size and complexity of the global interface
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system as p increases. In Figure 4.7 we show the initial residuals for the global fine
mesh for the Poisson and Burger’s equations. From these images, it is clear that the
biggest residuals correspond to points on the interfaces ∂Ωi. This shows that setting
the residual to zero at coarse interior points is a reasonable approximation, at least
for these classes of problems.

Fig. 4.7. The initial fine mesh residual from (3.7) for Step 3 of adaptive paradigm for the case
p = 32.

In Table 4.2 we also record average execution times at various breakpoints in the
computation. The computations done in Step 1 were done on only one processor,
but the time was charged equally and fully to all processors. The time used for Step
1 increases slowly as a function of p. In all the runs, all the computations involved
were the same in Step 1, except for the load balance, so the increase in time can
be attributed in full to the increasing number of eigenvalue problems solved in the
recursive spectral bisection algorithm as p increased. However, in terms of the the
overall computation, Step 1 has very minimal impact, so this is not a large effect.
The cost of Step 2 was very stable over the entire range of p, although there was some
increase. This was mainly due to the the increasing cost of reconciling the mesh as p
increased. This illustrates good scalability and near perfect speedup. In addition, the
execution times of different processors only vary in a small range in Step 2, indicating
good load balance from mesh partition. Step 3 refers to the domain decomposition
solve using the procedure described in Section 3. Here we see some increase in time
with increasing p. This seems to reflect mostly the increasing number of domain
decomposition iterations required. Also, the range of times increases in some cases;
this reflects differing numbers of multigraph iterations used on different processors to
satisfy (3.14).

To better illustrate the convergence behavior of the method, in Table 4.3, we
present some results for the Poisson equation for three target values Np and different
numbers of processors. This allows us to see more clearly the dependence of the rate
of convergence on N and p. In this case we used the modified convergence criteria

||δUk||G
||Uk||G

≤ ||δU
0||G

||U0||G
× 10−3. (4.2)

This results in discrete solutions with errors on the order of O(10−6)–O(10−7). This
is well below the approximation error, but it shows the effectiveness of our method
in terms of solving the linear system. We also remark that taking Np = 25000 with
Nc = 8000 is very inefficient for the parallel solution. Even Np = 50000 could be
considered inefficient. However, our goal here was to provide several values of N
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for each value of p, and these choices provided a simple way to achieve this limited
objective. The results show some logarithmic-like dependence of the convergence rate
on p, but only a very weak dependence on N .

Table 4.3
p is the number of processors, Np is the target size of for the mesh on each processor, N the

number of vertices in the global fine mesh, and DD the number of domain decomposition iterations
required to satisfy ||δUk||G/||Uk||G ≤ 10−3||δU0||G/||U0||G.

Np p = 2 p = 4 p = 8 p = 16 p = 32
N DD N DD N DD N DD N DD

25000 40928 2 66949 5 119946 6 205385 7 344216 9
50000 90015 3 165433 5 302946 6 556735 8 1012872 10

100000 188672 3 359736 5 683620 6 1304403 9 2480831 10

Acknowledgment. We would like to thank the referees, whose thoughtful com-
ments greatly improved the manuscript.

REFERENCES

[1] R. E. Bank, Multigraph users’ guide - version 1.0, tech. report, Department of Mathematics,
University of California at San Diego, 2001.

[2] R. E. Bank, P. E. Gill, and R. F. Marcia, Interior methods for a class of elliptic variational
inequalities, in Proceedings of the First Sandia Workshop on Large-scale PDE Constrained
Optimization, to appear.

[3] R. E. Bank and M. J. Holst, A new paradigm for parallel adaptive meshing algorithms, SIAM
J. on Scientific Computing, 22 (2000), pp. 1411–1443.

[4] , A new paradigm for parallel adaptive meshing algorithms, SIAM Review, 45 (2003),
pp. 292–323.

[5] R. E. Bank and P. K. Jimack, A new parallel domain decomposition method for the adaptive
finite element solution of elliptic partial differential equations, Concurrency and Compu-
tation: Practice and Experience, 13 (2001), pp. 327–350.

[6] R. E. Bank, P. K. Jimack, S. A. Nadeem, and S. V. Nepomnyaschikh, A weakly overlap-
ping domain decomposition preconditioner for the finite element solution of elliptic partial
differential equations, SIAM J. on Scientific Computing, 23 (2002), pp. 1817–1841.

[7] R. E. Bank, A. H. Sherman, and A. Weiser, Refinement algorithms and data structures
for regular local mesh refinement, in Scientific Computing (Applications of Mathematics
and Computing to the Physical Sciences) (R. S. Stepleman, ed.), North Holland, 1983,
pp. 3–17.

[8] R. E. Bank and R. K. Smith, An algebraic multilevel multigraph algorithm, SIAM J. on
Scientific Computing, 25 (2002), pp. 1572–1592.

[9] R. E. Bank and J. Xu, Asymptotically exact a posteriori error estimators, part I: Grids with
superconvergence, SIAM J. Numerical Analysis, (to appear).

[10] , Asymptotically exact a posteriori error estimators, part II: General unstructured grids,
SIAM J. Numerical Analysis, (to appear).

[11] M. W. Beall and M. S. Shephard, A general topology-based mesh data structure, Internat.
J. Numer. Methods Engrg., 40 (1997), pp. 1573–1596.

[12] F. Belgacem, The mortar finite element method with Lagrange multipliers, 1997. Preprint.
[13] C. Bernardi, Y. Maday, and A. Patera, A new nonconforming approach to domain decom-

position: the mortar element method, in Nonlinear partial differential equations and their
applications, H. B. adn J.L. Lions, ed., Pitman Research Notes in Mathematics, New York,
1994, John Wiley and Sons, pp. 13–51.

[14] D. Braess, W. Dahmen, and C. Weiners, A multigrid algorithm for the mortar finite element
method, SIAM J. on Numerical Analysis, 37 (1999), pp. 48–69.

[15] T. Chan and T. Matthew, Domain decomposition algorithms, in Acta Numerica, Cambridge
University Press, 1994, pp. 61–143.

[16] T. F. Chan and J. Zou, A convergence theory of multilevel additive Schwarz methods on
unstructured meshes, Numerical Algorithms, 13 (1996), pp. 365–398.

[17] H. L. deCougny, K. D. Devine, J. E. Flaherty, R. M. Loy, C. Ozturan, and M. S. Shep-



A DOMAIN DECOMPOSITION ALGORITHM 23

hard, Load balancing for the parallel adaptive solution of partial differential equations,
Appl. Num. Math., 16 (1994), pp. 157–182.

[18] D. Dobranich, Advances in modeling thermally-activated batteries, tech. report, Sandia Na-
tional Laboratories internal memo, Albuquerque, New mexico, 1995.

[19] M. Dryja and O. B. Widlund, Some domain decomposition algorithms for elliptic problems,
in Iterative Methods for Large Linear Systems, Boston, 1990, Academic Press, pp. 273–291.

[20] M. Dryja and O. B. Widlund, Towards a unified theory of domain decomposition algorithms
for elliptic problems, in Third International Symposium on Domain Decomposition Meth-
ods, T. F. C. et al, ed., Philadelphia, 1990, SIAM, pp. 3–21.

[21] J. E. Flaherty, R. M. Loy, C. Ozturan, M. S. Shephard, B. K. Szymanski, J. D. Teresco,
and L. H. Ziantz, Parallel structures and dynamic load balancing for adaptive finite
element computation, Appl. Num. Math., 26 (1998), pp. 241–263.

[22] G. Haase, U. Langer, A. Meyer, and S. V. Nepomnyaschikh, Hierarchical extension op-
erators and local multigrid methods in domain decomposition preconditioners, East-West
J. Numer. Math., 2 (1994), pp. 172–193.

[23] G. Haase and S. V. Nepomnyaschikh, Explicit extension operators on hierarchical grids,
East-West J. Numer. Math., 5 (1997), pp. 231–248.

[24] D. C. Hodgson and P. K. Jimack, A domain decomposition preconditioner for a parallel finite
element solver on distributed unstructured grids, Parallel Computing, 23 (1997), pp. 1157–
1181.

[25] J. Huang and J. Zou, A mortar element method for elliptic problems with discontinuous
coefficients, IMA J. Numer. Anal., 22 (2002), pp. 549–576.

[26] R. R. Lober, Thermal battery life test problem for residual method error measure development,
tech. report, Sandia National Laboratories internal memo, Albuquerque, New mexico, 1999.

[27] S. Lu, Parallel Adaptive Multigrid Algorithms, PhD thesis, Department of Mathematics, Uni-
versity of California at San Diego, 2004.

[28] W. Mitchell, The full domain partition approach to distributing adaptive grids, Applied Nu-
merical Mathematics, 26 (1998), pp. 265–275.

[29] , The full domain partition approach to parallel adaptive refinement, in Grid Generation
and Adaptive Algorithms, IMA Volumes in Mathematics and its Applications, Springer-
Verlag, Heidelberg, 1998, pp. 152–162.

[30] , A parallel multigrid method using the full domain partition, Electronic Transactions on
Numerical Analysis, 6 (1998), pp. 224–233.

[31] P. M. Selwood, M. Berzins, and P. M. Dew, 3D parallel mesh adaptivity : Data structures
and algorithms, in Parallel Processing for Scientific Computing, Philadelphia, 1997, SIAM.

[32] B. Smith, P. Bjorstad, and W. Gropp, Domain Decomposition: Parallel Multilevel Methods
for Elliptic Partial Differential Equations, Cambridge University Press, 1996.

[33] C. Walshaw and M. Berzins, Dynamic load balancing for pde solvers on adaptive unstructured
meshes, Concurrency: Practice and Experience, 7 (1995), pp. 17–28.

[34] B. I. Wohlmuth, A mortar finite element method using dual spaces for the Lagrange multiplier,
SIAM J. Numer. Anal., 38 (2000), pp. 989–1012 (electronic).

[35] J. Xu, Iterative methods by space decomposition and subspace correction, SIAM Review, 34
(1992), pp. 581–613.

[36] J. Xu and J. Zou, Some nonoverlapping domain decomposition methods, SIAM Review, 40
(1998), pp. 857–914.


