
Computing and Visualization in Science manuscript No.
(will be inserted by the editor)

Some Variants of the Bank-Holst Parallel Adaptive Meshing Paradigm

Randolph E. Bank?

Department of Mathematics University of California, San Diego La Jolla, California 92093-0112. (email:rbank@ucsd.edu).

October 5, 2004

Abstract. The Bank-Holst adaptive meshing paradigm
is an efficient approach for parallel adaptive meshing of
elliptic partial differential equations. It is designed to
keep communication costs low and to take advantage of
existing sequential adaptive software. While in principle
the procedure could be used in any parallel environment,
it was mainly conceived for use on small Beowulf clusters
with a relatively small number of processors and a slow
communication network. A typical calculation on such a
machine might involve, say p = 32 processors, an adap-
tive fine mesh with a few million vertices, and use 2–3
minutes of computational time. In this work we, discuss
a variant of the original scheme that could be used in sit-
uations where a much larger number of processors, say
p > 100 is available. In this case the problem size could
be much larger, say 10–100 million, with still a low to
moderate computation time.

Key words Bank–Holst algorithm, parallel adaptive
grid generation.

1 Introduction

In [1,2], we introduced a general approach to parallel
adaptive meshing for systems of elliptic partial differen-
tial equations. Our approach is designed to keep com-
munications costs low, and to allow sequential adaptive
software (such as the software package pltmg used in
this work) to be employed without extensive recoding.
Our original paradigm has three main components:

Step 1: Load Balancing. We solve a small problem
on a coarse mesh, and use a posteriori error estimates

? The work of this author was supported by the Na-
tional Science Foundation under contract DMS-0208449. The
UCSD Scicomp Beowulf cluster was built using funds pro-
vided by the National Science Foundation through SCREMS
Grant 0112413, with matching funds from the University of
California at San Diego.

to partition the mesh. Each subregion has approxi-
mately the same error, although subregions may vary
considerably in terms of numbers of elements or grid-
points.
Step 2: Adaptive Meshing. Each processor is pro-
vided the complete coarse mesh and instructed to
sequentially solve the entire problem, with the stipu-
lation that its adaptive refinement should be limited
largely to its own partition. The target number of el-
ements and grid points for each problem is the same.
At the end of this step, the mesh could be regularized
such that the global mesh described in Step 3 will be
conforming.
Step 3: Global Solve. A final mesh is computed
using the union of the refined partitions provided by
each processor. A final solution computed using a do-
main decomposition or parallel multigrid technique.

With this approach, the load balancing problem is re-
duced to the numerical solution of a small elliptic prob-
lem on a single processor, using a sequential adaptive
solver such as pltmg without requiring any modifica-
tions to the sequential solver. The bulk of the calcula-
tion in the adaptive meshing step also takes place inde-
pendently on each processor and can also be performed
with a sequential solver with no modifications necessary
for communication. The only parts of the calculation
requiring communication are (1) the initial fan-out of
the mesh distribution to the processors at the begin-
ning of adaptive meshing step, once the decomposition
is determined by the error estimator in load balancing;
(2) the mesh regularization, requiring communication to
produce a global conforming mesh in preparation for
the final global solve in Step 3; and (3) the final solu-
tion phase, that might require local communication (e.g.,
boundary exchanges). In some circumstances, it might
be useful to avoid the initial fan-out communication step
by allowing all processors (which are otherwise idle) to
simultaneously compute the coarse solution and load bal-
ance in Step 1. Note that a good initial guess for the final
global solve is provided by the adaptive meshing step by
taking the solution from each subregion restricted to its
partition.

2 Randolph E. Bank

A more complete discussion of the overall paradigm
as well as some numerical illustrations can be found in [1,
2]. A description of a domain decomposition solver used
in Step 3 of the paradigm is given in [3]. In Mitchell [10],
a parallel adaptive procedure similar to Step 2 of our
procedure is described. See [12,11,6–8] for some other
approaches to parallel adaptive meshing.

Our goal of this work is to present a variant of the
above approach in which the load balancing occurs on a
much finer mesh. In Step 1 of the paradigm, we assume
that Nc � p where Nc is the size of the coarse mesh and
p is the number of processors. This is necessary to allow
the load balance to do an adequate job of partitioning
the domain into regions with approximately equal er-
ror. We also assume that Nc is sufficiently large and the
mesh sufficiently well adapted for the a posteriori error
estimates to accurately reflect the true behavior of the
error. For the second step of the paradigm, we assume
that Np � Nc where Np is the target size for the adap-
tive mesh produced in Step 2 of the paradigm. Taking
Np � Nc is important to marginalize the cost of re-
dundant computations. For example, if Np = 2Nc, then
one could expect that about half of the computation on
each processor would be redundant, which is a signifi-
cant fraction of the total cost. By solving the problem
on the entire domain, using a coarse mesh in all but one
subregion, we are in effect substituting computation for
communication. This trade-off is most effective in situa-
tions where Np is much larger than Nc (e.g., Np > 10Nc)
so that the redundant computation represents a small
fraction of the total cost.

If any of these assumptions is weakened or violated,
there might be a corresponding decline the effectiveness
of the paradigm. In this case, we consider the possibility
of modifying Steps 1 and 2 of the paradigm as follows.

Step 1’: Load Balancing. On a single processor we
adaptively create a fine mesh of size Np, and use a
posteriori error estimates to partition the mesh such
that each subregion has approximately equal error,
similar to Step 1 of the original paradigm.
Step 2’: Adaptive Meshing. Each processor is
provided the complete adaptive mesh and instructed
to sequentially solve the entire problem. However, in
this case each processor should adaptively coarsen
regions corresponding to other processors, and adap-
tively refine its own subregion. The size of the prob-
lem on each processor should remain at Np, but this
adaptive rezoning strategy will concentrate the de-
grees of freedom in the processor’s subregion. At the
end of this step, the mesh could be regularized such
that the global mesh described in Step 3 will be con-
forming.
Step 3’: Global Solve. This step is the same as
Step 3; the global mesh consists of the refined parti-
tions provided by each processor. A final solution is
computed using a domain decomposition or parallel
multigrid technique.

With this variant, the initial mesh can be of any size.
Indeed, our choice of Np is mainly for convenience and to
simplify notation. Of course, allowing the mesh in Step 1’

to be finer increases the cost of both the solution and the
load balance, but it allows for flexibility in overcoming
potential deficiencies of a very course mesh in the original
paradigm. As before, all processors could simultaneously
carry out Step 1’ in order to avoid the initial fan-out
communication step. It is also possible to compute the
solution in Step 1’ in parallel using some variant of the
original paradigm.

Another interesting extension is to create a three-
stage parallel adaptive procedure by essentially invoking
the new procedure in a recursive fashion. In this case,
suppose that we now have p2 processors available.

Step 1a”: Initial Load Balancing. On a single
processor we adaptively create a fine mesh of size
Np, and use a posteriori error estimates to partition
the mesh into p subregions such that each subregion
has approximately equal error, exactly as in Step 1’.
Step 2a”: Adaptive Meshing. p processors are
provided the complete adaptive mesh and instructed
to sequentially solve the entire problem, coarsening
outside and refining within their subregion. The over-
all mesh on each processor remains of size Np as in
Step 2’.
Step 1b”: Final Load Balancing. Each of the p
processors partitions just its own subregion in to p
smaller subregions of approximately equal error and
broadcasts its entire mesh to p processors (including
itself). Now a total of p2 processors are active.
Step 2b”: Adaptive Meshing. Each of the p2 has
one of the p meshes computed in Step2a”. Each pro-
cessor sequentially solves the entire problem, coars-
ening outside and refining within its subregion. The
overall mesh remains of size Np on each processor. At
the end of this step, the mesh could be regularized
such that the global mesh described in Step 3 will be
conforming.
Step 3’: Global Solve. This step is the same as
Steps 3 and 3’. The global mesh consists of the re-
fined partitions provided by each of the p2 processors.
A final solution is computed using a domain decom-
position or parallel multigrid technique.

In the case of the original paradigm, we envisioned
its use mainly in the environment of a small cluster of
fast workstations. In this situation the number of avail-
able processors typically is small or moderate. For exam-
ple, with the 32-processor cluster available to us we can
solve problems with several million nodes in a few min-
utes using the original paradigm [1–3]. The three stage
scheme described above is really not appropriate or nec-
essary for such an environment, but it could be used to
solve very large problems on very large parallel machines.
For example, consider the modest choices of p = 32
and Np = 100000. Suppose at each of the coarsening–
refinement adaptive step half the mesh points are moved
from outside to inside the processor’s subregion. With
this set of relatively conservative assumptions, in the fi-
nal global mesh each of the p2 = 1024 processors would
have at least 50000 mesh points in its refined subre-
gion; so the global refined mesh would have at least

Parallel Adaptive Meshing 3

50000×1024 ≈ 5×107 nodes. With less conservative as-
sumptions and/or more available processors, this scheme
could be used to adaptively solve problems with billions
of nodes on thousands of processors.

Although all these variants have simple communica-
tion patterns with small communication costs, it is im-
portant to emphasize one caveat. The goal of all these
procedures is to create a final global adaptive mesh in
which the error is roughly equilibrated among the ele-
ments, and the effort needed to create these meshes is
roughly the same on each processor. The idea of creat-
ing subregions of approximately equal error for the load
balancing steps really amounts to the fragile assump-
tion that this corresponds to approximately equal work
for each processor, and that the final adaptive mesh will
have a reasonable equilibration of the error among the
elements. In the three stage algorithm, this assumption
is further extrapolated in that the initial load balance
determines the p subregions used for the second load
balance.

The remainder of this manuscript is organized as fol-
lows. In Section 2, we present some numerical illustra-
tions of both the original paradigm and the new variant.
In Section 3, we briefly describe how the a posteriori er-
ror estimates are modified to produce error indicators
appropriate for the parallel adaptive refinement and un-
refinement schemes described above.

2 Numerical examples

In this section, we present some numerical results. Our
examples were run on a small linux-based Beowulf clus-
ter, consisting of 20 dual 1800 Athlon-CPU nodes with
2GB of memory each, a dual Athlon file server, and a
100Mbit CISCO 2950G Ethernet switch. This cluster
runs the npaci rocks version of linux (based on Red-
Hat 7.1), and employs mpich1.2.2 as its mpi implemen-
tation. The computational kernels of pltmg are written
in fortran; the g77 compiler (version 2.96) was used in
these experiments, invoked using the script mpif77 and
optimization flag -O.

The first example is the Helmholtz problem

−∆u− 100u = 1 in Ω,

u = 0 on ∂Ω.

Here Ω describes the topology of the North Sea; we
scaled the coordinates such that Ω ⊂ (0, 1)× (0, 1). This
problem is solved by a standard finite element method.
Let S be the space of continuous piecewise linear poly-
nomials corresponding to the triangulation of Ω. The
the solution uh ∈ S0, where S0 = {v ∈ S|v = 0 on ∂Ω}.
Linear systems involving the sparse symmetric indefinite
stiffness matrix are solved by the multigraph iteration
used in pltmg. The solution is shown is Figure 1.

The second example is the optimal control problem

min
∫

Ω

(u− u0)2 + γλ2 dx

subject to the constraint equation

−∆u = λ in Ω ≡ (0, 1)× (0, 1),
u = 0 on ∂Ω,

and the inequalities

1 ≤ λ ≤ 10.

The target function u0 is given by

u0 = sin(3πx) sin(3πy)

and the regularization parameter γ = 10−4.
The Lagrangian for this problem is given by

L(u, v, λ) =
∫

Ω

(u− u0)2 + γλ2 +∇u · ∇v − vλ dx

for (u, v, λ) ∈ H1
0 (Ω)×H1

0 (Ω)× L2(Ω).
This problem is discretized in standard fashion us-

ing piecewise linear finite elements. The approximation
(uh, vh, λh) ∈ S0 × S0 × S, where S and S0 are as de-
scribed above. The discrete solution (uh, vh, λh) is shown
in Figure 1.

The discretized problem is solved by an interior point
method; at each step the linear algebra problem, based
on the second derivatives of the Lagrangian, is of the
form H A 0

A 0 K
0 Kt G

 δu
δv
δλ

 =

bu

bv

bλ

 . (1)

The standard nodal basis functions are used. The ma-
trix A is the symmetric positive definite stiffness matrix
corresponding the the Dirichlet problem constraint. The
matrices H, K and G are all related to the mass matrix
M corresponding to S. In particular, H is a submatrix
of M corresponding to S0. The matrix K is rectangular;
trial basis functions correspond to the space S, while
test basis functions are those for the subspace S0. The
matrix G = γM +D, where D is a positive definite diag-
onal matrix with entries arising from the interior point
method applied to the inequality constraints for λ.

Linear systems involving A are easily solved using the
multigraph iteration. Additionally, linear systems involv-
ing G approximately solved using a simple symmetric
Gauss-Seidel iteration with conjugate gradient accelera-
tion. Based on these observations we construct a block
symmetric Gauss-Seidel preconditioner based on the 2×2
blocking indicated in (1), This is realized as follows:

Ac̃u = bv,

Ac̃v = bu −Hc̃u,

Gδλ = bλ −Ktc̃v, (2)
Aδu = bv −Kδλ,

Aδv = bu −Hδu.

If G were replaced by the Schur complement and all
linear systems solved exactly, this preconditioner would
yield the exact solution.

4 Randolph E. Bank

Fig. 1. Top left: solution of the Helmholtz equation. Top right: solution of the optimal control problem. Bottom left: the
Lagrange multiplier. Bottom right: the control function λ. The lines denote the load balance for the case p = 32.

In our first experiment, we solved the two exam-
ple problems using the original Bank-Holst paradigm for
various values of p. During Step 1 of the paradigm, we
began with an initial triangulation. For the Helmholtz
equation, the initial mesh was generated by pltmg from
a description of the boundary ∂Ω and contained N =
2900 vertices; for the obstacle problem we began with a
uniform 9× 9 mesh. These meshes were then adaptively
refined (on a single processor) to create a mesh with
Nc = 8000 vertices. This mesh was then partitioned into
p subregions (p = 2, 4, 8, 16, 32) using a spectral bisection
algorithm. This completed Step 1 of the paradigm. The
load balance for the case p = 32 for each of the examples
is shown in Figure 2. The a posteriori error estimation
procedure used in pltmg for adaptive refinement and
the load balancing is described in [4,5].

In Step 2 of the paradigm, the coarse mesh and solu-
tion were broadcast to all processors, and each processor
independently continued with the adaptive refinement,
creating an adaptively refined mesh with Np = 100000
vertices, with most of the refinement concentrated in its
own region. Prior to solving the final linear system with
Np = 100000, the global mesh was made conforming.
Unlike the similar experiments described in [2,3], the so-
lution of the final system of equations with Nc = 100000
is deferred until the beginning Step 3 of the paradigm.

In Step 3 of the paradigm, the global system of linear
equations was solved using the domain decomposition
algorithm described in [3]. Prior to the domain decom-
position iteration, the final system of equations left un-
solved in Step 2 is solved independently on each proces-
sor. Since pltmg is a script driven program, and various
procedures can be called in any order, forcing this solve
as part of the call to the DD solver insures that a good
initial guess is always provided to the DD solver.

For the Helmholtz equation, the solve is just a simple
linear system involving the finite element stiffness ma-
trix; the main point of interest is that the linear systems
were symmetric but indefinite. For the control problem,
the linear system was the block 3 × 3 system described
above, and each each approximate solution step con-
sisted of approximately solving the five linear systems
described in (2). This block solve was the inner iteration
of the interior point method used to solve the overall
problem.

In Figure 3, we show the mesh density for the global
fine mesh in the case p = 32. Since these global meshes
each have several million elements, one can not draw in-
dividual elements. Thus each element is colored by size,
and the edges are not drawn, yielding an image that
shows the general refinement pattern. Most important,
note that the overall refinement patterns seem reason-
able given the nature of the problems. Another point
to note is the relative smoothness of the mesh density
across the subdomain interfaces; this is an a posteriori
indication that the load balance computed in Step 1 of
the paradigm was good. In Figure 4, we plot a posterior
error estimates computed on the global refined mesh fol-
lowing Step 3 of the paradigm. Here we see that the
overall procedure did a reasonable job of equilibrating
the error. Here again, these error estimates provide some
a posteriori indication of the quality of the initial load
balance.

In Table 1, we provide a summary of the calculation.
The global value of N can be approximated by the for-
mula [1]

N ≈ pNp − (p− 1)Nc, (3)

where Nc is the size of the original coarse mesh (Nc =
8000 in our example) and Np is the target value used by
each processor in Step 2 of the parallel adaptive paradigm

Parallel Adaptive Meshing 5

Fig. 2. Top: the load balance for the case p = 32 for the original bank-Holst algorithm. Bottom, the load balance for the case
p = 32 for the variation.

Fig. 3. Mesh density for the final adaptive mesh. Both figures refer to the case p = 32 for the original Bank-Holst algorithm.

Fig. 4. A posteriori error estimate for the solution. Both figures refer to the case p = 32 for the original Bank-Holst algorithm.

(Np = 100000 in our example). As described in [2], each
processor refines some elements outside of its subdomain
Ωi, to maintain shape regularity in the transition be-
tween small elements within its subregion and generally
larger elements in the remainder of Ω, to control “pol-
lution” and other effects coming from the PDE outside
of Ωi, and to generally satisfy requirements imposed to
make the domain decomposition solver efficient. All of

this implies that generally

N < pNp − (p− 1)Nc.

For example, when p = 32, equation (3) predicts N ≈
2952000 when the actual values were N = 2304303 for
the Helmholtz equation and N = 2474511 for the control
problem. Note for the control problem, the size of the
global block 3× 3 linear system was approximately 3N .

6 Randolph E. Bank

In Table 1 we see that the number of domain decom-
position iterations is quite stable over the range of this
set of problems. As with the example problems in [3],
empirically the convergence rate appears to be largely
independent of N but has some logarithmic-like depen-
dence on p.

In Table 1 we also record average execution times at
various breakpoints in the computation. The computa-
tions done in Step 1 were done on only one processor,
but the time was charged equally and fully to all pro-
cessors. The time used for Step 1 increases slowly as a
function of p. In all the runs, all the computations in-
volved were the same in Step 1, except for the load bal-
ance, so the increase in time can be attributed in full
to the increasing number of eigenvalue problems solved
in the recursive spectral bisection algorithm that forms
the basis of the load balancing procedure. However, in
terms of the the overall computation, Step 1 has very
minimal impact, so this is not a large effect. The cost
of Step 2 was very stable over the entire range of p, al-
though there was some increase. This was mainly due to
the the increasing cost of reconciling the mesh as p in-
creased. The times reported here are relatively less than
in similar Tables in [2,3] because the solve for the last
problem of on the mesh of size Np = 100000 was deferred
until Step 3. The results illustrate good scalability and
near perfect speedup. In addition, the execution times of
different processors only vary in a small range in Step 2,
indicating good load balance from mesh partition. Step 3
refers local solve on the final adaptive mesh, followed by
the global domain decomposition solve using the proce-
dure described in [3]. Here we see some increase in time
with increasing p. This seems to reflect mostly the in-
creasing number of domain decomposition iterations re-
quired. Also, the range of times increases in some cases;
this largely reflects differing numbers of multigraph iter-
ations used on different processors for the approximate
solution of linear systems involving A.

In the second experiment, we solved each problem
again using the modified strategy. This time we took
p = 16, 32, 64, 128, 256. We note that since our cluster
had only 20 dual nodes, for larger values of p each pro-
cessor had multiple processes; in effect this experiment
is only a simulation of such a calculation on a larger ma-
chine. For this experiment, in Step 1’, we started from
the same initial mesh as in the previous experiment, but
adaptively refined on one processor to a mesh of size
N = 100000 (instead of N = 8000). The mesh with
N = 100000 was then load balanced using the spectral
bisection algorithm, and the resulting global mesh broad-
cast to all processors.

In Step 2’, each processor used a rezone option avail-
able in pltmg to unrefine the mesh of size Np = 100000
to one of size N̂ = 50000, and the refine this coarsened
mesh back to one of size Np = 100000. In the coarsening
phase, all or most of the vertices deleted from the mesh
were in regions outside of the subdomain associated with
that processor. In the refinement phase, most of the re-
finement took place within the regions subdomain. The
net result was a transfer of about 50000 from outside to

inside the processors subdomain. Following this rezone,
the global mesh was made conforming as in Step 2 of the
original paradigm.

Step 3’ is essentially the same as Step 3 in the first ex-
periment. Each processor locally solved the equations as-
sociated with its rezoned mesh of size Np = 100000. This
was followed by a global domain decomposition solve.

The parallel implementation in pltmg was directed
mainly towards the original paradigm. While it can be
used with no change for the new variant, this experi-
ment illustrates several deficiencies in the current paral-
lel implementation, although not in the basic paradigm
itself. In particular, a central assumption in the current
pltmg implementation is that the load balance is done
in a coarse mesh, while in these experiments, the load
balance was done on a mesh of size Np = 100000.

In Table 2 we summarize the results. In compar-
ing the times for Step 1’, we see that the times are
much larger than in the original paradigm, and increase
slightly with increasing p. The calculation was done on
one processor, and the time should be the same for each
value of p, since the same computations were performed.
Much of the time spent in Step 1’ was devoted to solv-
ing eigenvalue problems as part the spectral bisection
algorithm used for load balancing. The results indicate
that while the current algorithm is certainly adequate
for the original paradigm (the largest problem was ap-
proximately of order 16000 in the first experiment) it is
very inefficient for the new variant, because the orders
of the eigenvalue problems are much larger (the largest
was approximately 200000 in this example). The load
balance for the case p = 32 is shown in Figure 2; we note
that the overall partitioning is quite similar despite the
large difference in the size of the mesh.

Step 2’ of the variant is quite comparable to Step
2 of the original paradigm, in terms of time. However,
here we encounter a second deficiency in the current im-
plementation. In the current pltmg, vertices lying at
endpoints of the original (coarse) edges defining the in-
terface system are not allowed to be deleted in the un-
refinement step. If an interface edge is refined, the new
interface vertex is allowed to be considered for deletion
in a subsequent unrefinement step. If the original inter-
face system is defined on a coarse mesh, this typically
causes no problems. In this case, however, it caused an
unusual pattern in the unrefinement step. In particular,
most of the unrefinement occurred in the interiors of the
regions other than that associated with the given pro-
cessor, with the unrefinement being graded towards the
interface.

Prohibiting deletion of the original interface vertices
allows for an efficient algorithm for regularizing the global
mesh at the end of the second step. Since this regular-
ization process mainly involves the edges defining the
boundary of the processor’s subdomain, allowing unre-
finement on parts of the interface system not associated
with the given processor’s subregion seems to be feasible,
and is a topic for future research.

We can predict the size of the global mesh in an ideal-
ized situation as follows. Assume that the original mesh
has Np vertices, and that θNp, 0 < θ < 1 vertices are

Parallel Adaptive Meshing 7

Table 1. Summary of computation for the original Bank-Holst paradigm. p is the number of processors, N the number
of vertices in the global fine mesh, DD the number of domain decomposition iterations. The breakpoints are accumulated
execution times, in seconds. The range of execution times among all processors for Step 2 and Step 3 appear in parentheses.

p N DD Breakpoints
End of Step 1 End of Step 2 End of Step 3

Helmholtz Equation
2 186416 2 1.7 19.4 (18.6-20.2) 77.0 (73.5-80.5)
4 354123 2 2.0 19.2 (16.2-21.7) 82.3 (68.6-105.0)
8 666160 3 2.2 20.5 (18.4-23.3) 105.2 (82.4-141.6)
16 1232550 4 2.4 19.9 (15.7-24.4) 124.7 (82.1-189.3)
32 2304303 4 2.6 20.1 (15.5-25.3) 130.5 (83.2-163.1)

Optimal Control Problem
2 190087 1 5.1 25.3 (25.2-25.4) 97.6 (97.3-97.8)
4 365117 1 5.3 27.1 (26.0-28.3) 107.6 (100.4-115.2)
8 689242 1 5.6 27.0 (25.7-28.5) 109.1 (97.9-117.8)
16 1317877 1 5.9 27.4 (25.6-29.2) 114.1 (97.2-126.5)
32 2474511 1 6.1 28.1 (25.6-29.5) 124.1 (99.6-138.9)

rezoned in the unrefinement/refinement step. Most of
these vertices will be moved from outside to inside the
processor’s subdomain. Thus the global value of N can
be approximated by

N ≈ pθNp + Np. (4)

In this experiment θ = 1/2 and Np = 100000. When p =
32, equation (4) predicts N = 1700000, where the actual
values were N = 1472638 for the Helmholtz equation
and N = 1482322 for the optimal control problem. For
the larger values of p, this underestimate becomes more
pronounced. We attribute this mainly to restrictions on
the unrefinement discussed above.

In Step 3’, the DD solver was used to solve the global
conforming system of equations, as in Step 3 of the orig-
inal paradigm. In these examples, the DD solver remains
quite effective and shows a slight logarithmic dependence
on p.

Overall, while these results are certainly preliminary
in nature, they demonstrate the potential of the variant
paradigm. In the largest optimal control problem, we cre-
ated and adaptive mesh with about 7.5 million vertices,
and solved the corresponding equations with about 22.5
million unknowns, in about 5 minutes (simulated).

3 Adaptive Refinement and Unrefinement

An important aspect of our algorithm is the criteria used
in adaptive refinement and unrefinement. In this section
we give a brief discussion of these points.

Suppose the global domain Ω is partitioned into p
non overlapping subdomains Ωi, 1 ≤ i ≤ p, such that

Ω = ∪i Ωi,

Ωi ∩Ωj = ∅, i 6= j.

In the case of simple refinement, on processor i the mesh
should be adaptively refined in the a more or less stan-
dard fashion within Ωi. However, some elements outside

of Ωi must also be refined, in order to grade the mesh be-
tween small elements in Ωi and larger elements elsewhere
in Ω while simultaneously controlling the shape regular-
ity of the elements. In the case of pltmg, the adaptive
refinement is based on a posteriori error estimates yield-
ing local error indicators based on the H1 norm. For a
detailed description and analysis of the error estimator
used here see [4,5].

In the case of adaptive unrefinement, on processor
i, the mesh should be coarsened in all subregions other
than Ωi. Once again, the need to keep the mesh both
conforming and shape regular means that the coarsening
should also be graded away from Ωi.

In the initial implementation of our algorithm, we
simply multiplied a posteriori error estimates for ele-
ments outside of Ωi by 10−6 so that the sequential adap-
tive refinement algorithms would be unlikely to choose
those elements for refinement on the basis of their error
estimate. Similarly, such elements would become obvious
targets for unrefinement. The refinement and unrefine-
ment subroutines in pltmg consider shape regularity as
part of their decision process. Also, each intermediate
mesh in the refinement or unrefinement process is always
conforming. So this simple strategy, used in conjunction
with reasonably sophisticated refinement and unrefine-
ment procedures, is sufficient to generated the types of
graded meshes described above.

However, it seems certain that this initial suggestion,
although quite simple and easy to implement, is probably
not an optimal strategy. The issue of grading the mesh
outside of Ωi is presently an active area of research that
will be reported elsewhere. Here we just summarize the
main issues.

First, it is clearly advantageous for processor i to con-
centrate as many degrees of freedom as possible within
Ωi. Mesh points in Ωi become mesh points in the final re-
fined global conforming mesh and contribute in a direct
way to the overall global solution. On the other hand,
mesh points outside of Ωi do not contribute directly to
the overall global solution. To some extent, they can be
viewed as a necessary overhead expense. Informally, we

8 Randolph E. Bank

Table 2. Summary of computation for the variant of the Bank-Holst paradigm. p is the number of processors, N the number
of vertices in the global fine mesh, DD the number of domain decomposition iterations. The breakpoints are accumulated
execution times, in seconds. The cost of Step 1 exclusive of the spectral bisection load balance and the range of execution
times among all processors for Step 2 and Step 3 appear in parentheses.

p N DD Breakpoints
End of Step 1’ End of Step 2’ End of Step 3’

Helmholtz Equation
16 829932 2 81.5 98.4 (95.1-100.5) 159.5 (140.0-186.7)
32 1472638 2 86.7 103.6 (99.1-106.5) 167.6 (139.8-198.8)
64 2610992 3 91.0 108.3 (104.3-110.4) 187.1 (152.9-216.8)
128 4641145 3 95.1 112.1 (108.3-115.4) 191.4 (157.3-224.0)
256 7941852 3 100.8 117.1 (113.0-125.1) 199.6 (163.9-229.0)

Optimal Control Problem
16 830641 1 144.3 161.8 (158.4-164.7) 223.1 (212.3-237.1)
32 1482322 1 149.6 167.1 (162.7-170.6) 234.6 (216.7-251.0)
64 2600084 2 140.3 158.1 (154.8-161.1) 242.4 (226.4-260.4)
128 4507853 2 153.2 171.1 (167.3-174.1) 260.1 (240.1-282.8)
256 7539839 2 146.6 164.5 (160.8-175.9) 265.0 (237.9-296.6)

substitute local computation on these extra mesh points
for interprocessor communication that would otherwise
be required.

Second, the goal of Step 2 (or Step 2’) is adaptive
mesh generation, not the computation of an accurate so-
lution. Clearly adaptive meshing and solution accuracy
are related, but it is not necessary to have an accurate so-
lution to determine a good adaptive mesh. On the other
hand, it is also clear that data outside of Ωi does influ-
ence the solution within Ωi. It is possible that such in-
fluence could be sufficiently strong to have a significant
adverse effect on the adaptive mesh generation within
Ωi if it is not at least partly resolved. Potential examples
are strong point singularities outside of Ωi, or upstream
flow in the case of PDE’s involving convection. While it
is not necessary for each processor to completely resolve
such behavior in order to create a good mesh on its own
subregion, it does seem important that each processor
determine the approximate influence on the solution in
its subregion, and then if necessary resolve it to an ap-
propriate level.

Third, the mesh outside Ωi plays an important role in
our domain decomposition solver, providing what amounts
to a “built-in” coarse mesh on each processor. We will
not discuss this point in detail here but rather refer the
interested reader to [3,9].

As we see from the above discussion, there are many
objectives and issues to be considered and balanced in
determining the nature of the coarse mesh outside of
Ωi on processor i. Here we address this problem with a
procedure that multiplies the a posteriori error estimate
for an element t outside of Ωi by a factor θt, 0 < θt ≤ 1.
This is the same as our original suggestion if we chose
θt = 10−6 for all t outside of Ωi. In the present situation,
however, we want θt = 1 for elements near ∂Ωi, and then
to have θt become small quickly but smoothly as the
distance from Ωi increases. The choice of θt also reflects
the influence from the behavior of the solution outside
of Ωi.

In our algorithm, for t 6∈ Ωi, θt is generally given by

θt =
ωt

2dt
, (5)

where ωt comes from an “influence function” for Ωi and
dt is a measure of distance from Ωi. We consider each of
these factors separately.

Assume that the bilinear form for the PDE (or its lin-
earization) is given by a(u, v). Let Vi denote the space of
continuous piecewise linear polynomials associated with
the existing global mesh on processor i (fine on Ωi and
coarse elsewhere). Let

Vi
0 = {φ ∈ Vi|φ(x) = 0 for all x ∈ Ωi},
Vi

1 = {φ ∈ Vi|φ(x) = 1 for all x ∈ Ωi}.

We consider the local dual problem: find w ∈ Vi
1 such

that
a(φ,w) = 0 (6)

for all φ ∈ Vi
0. Intuitively, w = 1 on Ωi, and for x 6∈

Ωi, w(x) should give some indication of the influence
of the solution near x on the solution in Ωi. Generally,
we expect w to decay towards zero as the distance to
Ωi increases, but the specific behavior depends on the
details of the PDE and the physical location of Ωi within
Ω.

In Figure 5, we show the function w corresponding
to several different processors for the case p = 32. These
dual functions were computed as part of the first numer-
ical example (original paradigm) but the ones for the
variant would be quite similar in character. For the case
of the optimal control problem, the differential operator
involved is just −∆, and the dual functions display ex-
actly the behavior described above. Dual functions for
the Helmholtz equation are more interesting. The decay
away from Ωi is not monotonic in this case, and each
dual function reveals a more complicated structure that
might be difficult to predict in advance.

Parallel Adaptive Meshing 9

Fig. 5. Left: typical dual functions for the Helmholtz equation. Right: typical dual functions for the optimal control problem.
In both cases, p = 32 and the original Bank-Holst paradigm was used.

We define ωt by

ωt = min(1,max
x∈t

|w(x)|).

Since w ∈ Vi
1, ωt is determined by examining only values

at the vertices, and trivially ωt = 1 for t ∈ Ωi.
In terms of linear algebra, problem (6) involves the

solution of a linear system involving a submatrix of the
stiffness matrix. Assume we use the standard nodal basis
for Vi. Then the stiffness matrix A has the block 2 × 2
form

A =
(

Aff Afc

Acf Acc

)
where Aff corresponds to mesh points in Ωi and Acc

corresponds to mesh points strictly outside of Ωi. As the
adaptive refinement proceeds, we expect that the order
of Aff will be much larger than that of Acc. The linear
system corresponding to (6) is

At
ccW + At

fce = 0

where superscript t stands for transpose, e is the vector of
ones, and W is a vector of values of w at the coarse mesh
vertices. This linear system is relatively inexpensive to
assemble and solve, since we can leverage much of the
effort used to assemble and solve linear systems involving
the matrix A, required for computing the finite element
solution.

We now consider the construction of the metric dt.
Informally, if the elements in Ωi with vertices lying on
∂Ωi are of size h, we want the first few layers of elements
outside of Ωi to also be of size h, and then the elements
should grow in size to approach the large elements in
most of Ω. For this reason, defining dt in terms of some
simple physical Euclidean metric would be undesirable.

Rather, we need to define distances relative to the local
value of h. A simple and efficient way to do this, assum-
ing we control shape regularity of the elements, is to use a
metric based on the triangulation itself. In particular, we
can inductively define distances δ(v) for all vertices v in
the mesh as follows. Initially all vertices have δ(v) unde-
fined. Then for each vertex v ∈ Ωi, we set δ(v) = 0. Any
vertex on any interface edge associated with a cross point
on ∂Ωi also has δ(v) = 0 regardless of whether v ∈ Ωi;
the goal is to control coarse grid refinement more care-
fully in the vicinity of cross points lying on ∂Ωi. We then
make a breadth-first search of the graph corresponding
to the mesh, starting from all vertices with δ(v) = 0.
All unmarked vertices v′ connected by an element edge
to a vertex with δ(v) = 0 are assigned δ(v′) = 1. In-
ductively, all unmarked vertices v′ connected to a vertex
with δ(v) = k are assigned δ(v′) = k + 1. Generally δ(v)
measures the shortest path in the graph from the ver-
tex v′ to any vertex with δ(v) = 0. The value of δ(v)
is computed for each vertex at the beginning of each
major adaptive step. δ(v) for any fixed vertex may in-
crease at each major adaptive step as the mesh becomes
more refined and its path length increases. This provides
a smooth mesh-dependent behavior that is desirable to
control refinement outside of Ωi. When we do adaptive
unrefinement as in the variant, δ(v) could decrease, again
in a relatively smooth fashion. pltmg also has options
for adaptive mesh moving, which leaves δ(v) invariant.

Let a given element t have vertices vk, 1 ≤ k ≤ 3.
Then

dt = min
1≤k≤3

δ(vk).

Finally for all elements with dt ≤ 1 we set θt = 1; oth-
erwise, we define θt using (5). The goal of this weighting
strategy is to produce a mesh where most of the refine-

10 Randolph E. Bank

ment occurs in Ωi and most unrefinement occurs outside
Ωi, but at the same to time allow modest refinement as
necessary outside of Ωi to meet the multiple goals of the
adaptive procedure itself, and the global domain decom-
position solver used in Step 3 of the paradigm.

Acknowledgements. We thank Gabriel Wittum of the Univer-
sity of Heidelberg for providing that data defining the North
Sea domain.

References

1. R. E. Bank and M. J. Holst, A new paradigm for par-
allel adaptive meshing algorithms, SIAM J. on Scientific
Computing, 22 (2000), pp. 1411–1443.

2. , A new paradigm for parallel adaptive meshing al-
gorithms, SIAM Review, 45 (2003), pp. 292–323.

3. R. E. Bank and S. Lu, A domain decomposition solver
for a parallel adaptive meshing paradigm, SIAM J. on
Scientific Computing, (to appear).

4. R. E. Bank and J. Xu, Asymptotically exact a posteri-
ori error estimators, part I: Grids with superconvergence,
SIAM J. Numerical Analysis, (to appear).

5. , Asymptotically exact a posteriori error estimators,
part II: General unstructured grids, SIAM J. Numerical
Analysis, (to appear).

6. H. L. deCougny, K. D. Devine, J. E. Flaherty,
R. M. Loy, C. Ozturan, and M. S. Shephard,
Load balancing for the parallel adaptive solution of par-
tial differential equations, Appl. Num. Math., 16 (1994),
pp. 157–182.

7. J. E. Flaherty, R. M. Loy, C. Ozturan, M. S. Shep-
hard, B. K. Szymanski, J. D. Teresco, and L. H.
Ziantz, Parallel structures and dynamic load balanc-
ing for adaptive finite element computation, Appl. Num.
Math., 26 (1998), pp. 241–263.

8. M. T. Jones and P. E. Plassmann, Parallel algorithms
for adaptive mesh refinement, SIAM J. Sci. Comput., 18
(1997), pp. 686–708.

9. S. Lu, Parallel Adaptive Multigrid Algorithms, PhD the-
sis, Department of Mathematics, University of California
at San Diego, 2004.

10. W. Mitchell, The full domain partition approach to
parallel adaptive refinement, in Grid Generation and
Adaptive Algorithms, IMA Volumes in Mathematics
and its Applications, Springer-Verlag, Heidelberg, 1998,
pp. 152–162.

11. P. M. Selwood, M. Berzins, and P. M. Dew, 3D par-
allel mesh adaptivity : Data structures and algorithms, in
Parallel Processing for Scientific Computing, Philadel-
phia, 1997, SIAM.

12. C. Walshaw and M. Berzins, Dynamic load balancing
for pde solvers on adaptive unstructured meshes, Concur-
rency: Practice and Experience, 7 (1995), pp. 17–28.

