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Abstract

The Helfrich energy is commonly used to model the elastic bending energy of lipid bilayers in
membrane mechanics. The governing differential equations for certain geometric characteristics
of the shape of the membrane can be obtained by applying variational methods (minimization
principles) to the Helfrich energy functional and are well-studied in the axisymmetric framework.
However, the Helfrich energy functional and the resulting differential equations involve a number
of parameters, and there is little explanation of the choice of parameters in the literature, particu-
larly with respect to the choice of the “spontaneous curvature” term that appears in the functional.
In this paper, we present a careful analytical and numerical study of certain aspects of parametric
sensitivity of Helfrich’s model. Using simulations of specific model systems, we demonstrate the
application of our scheme to the formation of spherical buds and pearled shapes in membrane
vesicles.

Keywords Helfrich model; membrane curvature; spontaneous curvature; parametric sensitivity
analysis.
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1 Introduction

The elastic behavior of lipid bilayers has been studied using mechanical models for fifty years or more
[5, 8]. A pseudoelastic strain energy functional was first described by Canham in 1970 [5] as a way
to explain the biconcave shape of red blood cells and subsequently by Helfrich [8] to describe the
mechanical behavior of lipid bilayers in various situations. This energy functional has now become
the most accepted model for describing the mechanical properties of the cell membrane. This model
has been used to study the shapes associated with whole cells, particularly that of the red blood cell
[5, 4, 20]. Subsequently, the Helfrich energy has been used to study the different shapes associated
with vesicles as a function of pressure, volume , and membrane composition [18].

While the original model proposed by Helfrich considered the lipid bilayer as a thin shell with
negligible thickness, over the years, there have been many mathematical developments to represent
the different physical properties of biological membranes. Some of these include the area difference
model [11] and the mattress model [12]. Among these, the spontaneous curvature model has been one
of the most popularly used models to represent the asymmetry between the two leaflets of the bilayer
Figure 1A [3]. The idea of spontaneous curvature to represent the asymmetry between the two leaflets
of the lipid bilayer was first introduced by Helfrich in his seminal 1973 paper [8]. Subsequently, this
term has since been used to capture compositional asymmetry, protein-induced spontaneous curvature,
coat proteins etc. (see [3] for a more detailed discussion).

For many problems of biophysical interest, it is necessary to consider the heterogeneity in compo-
sition across cell membranes [9]. In such cases, the spontaneous curvature function is often modeled
as a spatially varying quantity rather than as a constant to represent different membrane domains
without introducing a discontinuity for computational purposes[7, 2]. Alongside theoretical modeling
efforts, there have been significant advances in computational methods for solving the partial differ-
ential equations resulting from the minimization procedure of the Helfrich energy [22, 17]. A vast
majority of the simulations are implemented under the assumption of axisymmetry; this assumption
enables us to transform the partial differential equations describing the shape of the membrane into
a system of ordinary differential equations, which are then equipped with appropriate boundary con-
ditions to be solved [10] (Figure 1B). However, a major challenge associated with such simulations
remains the number of free parameters associated with the spontaneous curvature function.

We and others have found that the specific choice of the spontaneous curvature function and the
resulting parameters play an important role in determining the shape of the membrane [7, 23]. For cer-
tain parameters such as membrane bending modulus, there exist sufficient experimental measurements
to establish a range of physically relevant values [24]. However, for the spontaneous curvature func-
tion, such measurements are limited or don’t exist in forms that are always amenable to modeling. As
a result, throughout the literature, spontaneous curvature has been represented by different functions,
using a wide range of parameters values. Thus, it seems there is a need for a better understanding of
the sensitivity of the spontaneous curvature model with respect to the various parameters involved.

To address these issues and gain some insight into the role of parameters, as a first step, in this
work we study the local sensitivity of solutions of certain equations associated with the Helfrich energy
model with spontaneous curvature. We note that while parametric sensitivity analysis methods are
well-documented for initial value problems (IVPs) [21], in this work the problems we will consider
are boundary value problems (BVPs). We will show that parametric sensitivity analysis can provide
valuable insight into the impact of different parameters on energy minimization and a tool for better
understanding critical phenomena associated with the shape of the membrane.

In what follows, we present a summary of the Helfrich model with spontaneous curvature and
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axisymmetric parametrization in §2 and §3, development of the parametric sensitivity analysis method
in §4, present some numerical results in §5, and end with our interpretations and conclusions in §6.
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Figure 1: (A) Schematic depicting a sequence of membrane shapes associated with bending induced
by a protein coat represented by blue circles. This protein coat or other asymmetries in the leaflet
are often modeled using a spontaneous curvature. (B) Axisymmetric coordinates used to simulate the
governing equations and the corresponding boundary conditions.

2 Overview of the Helfrich energy with spontaneous curvature

The Helfrich energy serves as the constitutive equation for the lipid bilayer. We use a modified ver-
sion of the Helfrich energy that includes spatially-varying spontaneous curvature C as opposed to a
constant uniform value, as in [19, 1, 7].

w = κ [H − C]2 + κGK, (1)

where w is the energy per unit area, κ is the bending modulus, H is the mean curvature, κG is the
Gaussian modulus, and K is the Gaussian curvature. This form of the energy density accommodates
the local heterogeneity in the spontaneous curvature C. Note that w differs from the standard Helfrich
energy [8] by a factor of 2, which is accounted for by using the value of κ to be twice that of the
standard bending modulus typically encountered in the literature.
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2.1 Equations of motion

We refer the interested reader to [19] for a detailed derivation of the governing equations. We make the
following simplifying assumptions for simplicity in our model. We assume that the bending modulus
and Gaussian modulus are uniform, the pressure difference across the membrane is zero, and there are
no externally applied forces. Furthermore, we assume that the membrane is areally incompressible
and introduce a Lagrange multiplier λ to impose this constraint. It can be shown that among all
areally incompressible surfaces, the one that minimizes the Helfrich energy functional has mean and
Gaussian curvatures H and K satisfying:

κ∆ [(H − C)] + 2κ (H − C)
(
2H2 −K

)
− 2κH (H − C)2 = 2λH (2)

and

∂λ

∂θα
= 2κ (H − C)

∂C

∂θα
, (3)

where θα (α = 1, 2) denotes the surface coordinates and ∆ is the Laplace-Beltrami operator. Equa-
tion (2) gives the normal force balance on the membrane. Equation (3) represents the tangential force
balance along the membrane. For a heterogeneous membrane (non-uniform or coordinate-dependent
C(θα)), this equation also represents the variation of λ along the surface [19]. Detailed discussions of
interpretation of λ are given in [19, 15, 16].

2.2 Choice of spontaneous curvature function

In the existing literature, for cases where the situation under consideration can be classified as an
axisymmetric problem, the spontaneous curvature function, C(θα), is often represented using a hy-
perbolic tangent function to capture differences in the ‘coated’ versus ‘uncoated’ regions. In this work,
we use two forms of this function. Each form involves certain free parameters and we perform our
parametric sensitivity analysis to understand the extent to which these parameters can affect the elastic
bending energy and the shape of the membrane. These functions are given as

Type I: C(u) = 0.5C0

[
1− tanh [ξ(u− u0)]

]
, (4)

Type II: C(u) = −0.5C0
u− u0
u0

[
1− tanh [ξ(u− u0)]

]
. (5)

In the above formulae, we used the generic variable u instead of θα. This variable can be viewed
as one of the coordinates used in the parametrization of the surface of revolution representing the
membrane as will be described in the next section.

3 Axisymmetric parametrization

Under the assumption of axisymmetry, which in part implies that the surface representing the mem-
brane is a surface of revolution obtained by rotating a regular curve about an axis, the governing
equations shown in Equations (2) and (3) can be recast as a system of ordinary differential equa-
tions. When equipped with appropriate boundary conditions, reflecting the geometric and physical
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constraints of the problem, the solution of the resulting boundary value problem will determine the
shape of the membrane. In what follows, we first describe this viewpoint in more detail, and then
we summarize the various ways our ODE system can be represented depending on the choice of arc-
length or area parametrization.

Under the assumption of axisymmetry, without loss of generality, we may assume that the surface
of the membrane is generated by rotating a curve in the right half of the rz-plane, about the z-axis.
We let p : [0, S] → R2 defined by s 7→ (r(s), z(s)) denote the arc-length parametrization of the
generating curve (or the profile curve). Then

r(s, ϕ) =
(
r(s) cosϕ, r(s) sinϕ, z(s)

)
(6)

is a parametrization of the surface of membrane (here 0 ≤ s ≤ S and 0 ≤ ϕ ≤ 2π). Since [r′(s)]2 +
[z′(s)]2 = 1, there exists a function Ψ(s) such that

r′(s) = cos Ψ(s), z′(s) = sin Ψ(s). (7)

Ψ can be viewed as the angle made by the curve with the horizontal.
Using well-known formulas for the Gaussian and mean curvatures of a surface of revolution (see,

for example, [6]), it is easy to show that if we orient the surface with the unit normal vector that points
in the direction of −∂r

∂s ×
∂r
∂ϕ , then

rΨ′ = 2rH − sin Ψ, (8)

K = H2 − (H − sin Ψ

r
)2. (9)

In order to be able to write the final equations as first-order equations, we introduce the auxiliary
variable L as follows:

L = r
[
H − C

]′
. (10)

Now, using the above equalities and Equation (2), it is easy to see that

H ′(s) = r(s)−1L(s) + C ′(s), (11)

r(s)−1L′(s) = 2H(s)
[
(H(s)− C(s))2 +

λ(s)

κ

]
(12)

− 2(H(s)− C(s))
[
H(s)2 +

(
H(s)− sin Ψ(s)

r(s)

)2]
.

In the above, we used the fact that if f is any function defined on our surface of revolution whose
values depend only on s, then

∆f =
[r(s)f ′(s)]′

r(s)
.

Finally, Equation (3) gives

λ′(s) = 2κ(H(s)− C(s))C ′(s). (13)

Remark 3.1. In what has been discussed so far, we have referred to the assumption of axisymmetry
a number of times without clearly explaining what this assumption entails. Now we are at a position
to give a careful description of this key assumption. In the present work, we say that our problem falls
into the axisymmetric category if and only if

6



1. the surface of the membrane is a surface of revolution parametrized by r(s, ϕ) as described
above, and

2. the values of the spontaneous curvature function C depend only on s.

3.1 Arc-length formulation

In this formulation, as described above, s is the arc-length along the membrane and the unknown
functions are

r(s), z(s), Ψ(s), H(s), L(s), λ(s). (14)

These functions must satisfy the following system of ODEs on the interval [0, S]:

r′ = cos Ψ, z′ = sin Ψ, rΨ′ = 2rH − sin Ψ, H ′ = r−1L+ C ′, (15a)

r−1L′ = 2H
[
(H − C)2 +

λ

κ

]
− 2(H − C)

[
H2 + (H − r−1 sin Ψ)2

]
, (15b)

λ′ = 2κ(H − C)C ′. (15c)

Before we attempt to numerically solve the above system of equations, we need to provide the
system with appropriate boundary conditions. Certain suitable classes of boundary conditions for the
above system will be introduced in §5.

3.2 Dimensionless arc-length formulation

In this formulation, we fix two positive constants R0 and κ0 that will be used to nondimensionalize
the variables in the arc-length formulation by setting t = s

R0
, κ̃ = κ

κ0
, and defining:

x(t) =
1

R0
r(R0t), y(t) =

1

R0
z(R0t), ψ(t) = Ψ(R0t), h(t) = R0H(R0t), (16a)

c(t) = R0C(R0t), l(t) = R0L(R0t), λ̃(t) =
R2

0

κ0
λ(R0t). (16b)

Note that s ∈ [0, S] and t ∈ [0, T ] where S = R0T .
A simple application of chain rule shows that the six dimensionless unknown functions x(t), y(t),
ψ(t), h(t), l(t), and λ̃(t) must satisfy the following system of ODEs on the interval [0, T ]:

ẋ = cosψ, ẏ = sinψ, xψ̇ = 2xh− sinψ, ḣ = x−1l + ċ, (17a)

x−1 l̇ = 2h
[
(h− c)2 +

λ̃

κ̃

]
− 2(h− c)

[
h2 + (h− x−1 sinψ)2

]
, (17b)

˙̃
λ = 2κ̃(h− c)ċ. (17c)

(Here dot denotes the derivative with respect to t.)

Remark 3.2. It is worth mentioning that if we assume C(s) has the following form:

C(s) = 0.5C0

[
1− tanh [ξ(s− s0)]

]
, (18)
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where C0, ξ, and s0 are certain constants, then

c(t) = R0C(R0t) = 0.5C0R0

[
1− tanh [ξ(R0t− s0)]

]
= 0.5C0R0

[
1− tanh [ξR0(t−

s0
R0

)]
]
.

(19)

So if we let γ = R0ξ and t0 = s0
R0

, then

c(t) = 0.5C0R0

[
1− tanh [γ(t− t0)]

]
. (20)

Similar calculations show that if we assume C(s) has the form

C(s) = (−0.5C0)(
s− s0
s0

)
[
1− tanh [ξ(s− s0)]

]
, (21)

then
c(t) = (−0.5C0)R0(

t− t0
t0

)
[
1− tanh [γ(t− t0)]

]
. (22)

where γ = R0ξ and t0 = s0
R0

.

Remark 3.3. In the future sections of this paper, we will be interested in the derivatives of the solu-
tion functions with respect to input parameters such as C0. These derivatives will be referred to as
sensitivities. An application of the chain rule shows that sensitivities calculated using dimensionless
variables are constant multiples of sensitivities computed using the original variables. For example,

∂h

∂C0

∣∣
t=t̂

= R0
∂H

∂C0

∣∣
s=R0 t̂

, (23)

∂h

∂γ

∣∣
t=t̂

=
1

R0

∂h

∂ξ

∣∣
t=t̂

=
1

R0
R0
∂H

∂ξ

∣∣
s=R0 t̂

=
∂H

∂ξ

∣∣
s=R0 t̂

, (24)

∂h

∂t0

∣∣
t=t̂

=
1

1/R0

∂h

∂s0

∣∣
t=t̂

=
1

1/R0
R0
∂H

∂s0

∣∣
s=R0 t̂

= R2
0

∂H

∂s0

∣∣
s=R0 t̂

. (25)

3.3 Area formulation

Here we introduce the new variable a as the area of the surface of revolution produced by rotating the
segment of the curve spanned as the arc-length varies from 0 to s, that is,

a(s) =

∫ s

0
2πr(u) du. (26)

Since there is a one-to-one relationship between a and s, we can view the six unknown functions as
functions of a rather than s. As it pointed out in [7], this formulation has the advantage of prescribing
the total area of the membrane as the domain size (rather than the corresponding arc-length) which is
more physical and amenable to laboratory measurements.

A simple application of the chain rule shows that, if we denote the total area (of the membrane)
by A, then the unknown functions

r(a), z(a), Ψ(a), H(a), L(a), λ(a) (27)
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must satisfy the following system of ODEs on the interval [0, A]:

2πrr′ = cos Ψ, 2πrz′ = sin Ψ, 2πr2Ψ′ = 2rH − sin Ψ, 2πr2H ′ = L+ 2πr2C ′, (28a)

2πL′ = 2H
[
(H − C)2 +

λ

κ

]
− 2(H − C)

[
H2 + (H − r−1 sin Ψ)2

]
, (28b)

λ′ = 2κ(H − C)C ′. (28c)

As noted above, we will discuss suitable boundary conditions in §5.

Remark 3.4. We emphasize that in the above formulae, the functions r, z, Ψ, H , L, λ, and C which
originally were introduced as functions of s, are viewed as functions of the variable a; indeed, if we
let g(s) =

∫ s
0 2πr(u) du, then any function of s can be written as a function of a by replacing each

instance of s in the expression of the function by g−1(a); so if we wanted to be completely rigorous,
in the above, instead of r, z, Ψ, H , L, λ, and C, we should have written r̂, ẑ, Ψ̂, Ĥ , L̂, λ̂, and
Ĉ, where r̂ = r(g−1(a)), ẑ = z(g−1(a)), etc. It is customary to abuse notation and denote these
new variables by the same symbols as the original variables. In §6.1 we will make use of this very
elementary observation to better understand the relationship between the simulation results obtained
using the arc-length formulation and those obtained using the area formulation.

3.4 Dimensionless area formulation

In this formulation, we fix two positive constants R0 and κ0 which will be used to nondimensionalize
the variables in the previous formulation by setting α = a

2πR2
0
, κ̃ = κ

κ0
, and defining:

x(α) =
1

R0
r(2πR2

0α), y(α) =
1

R0
z(2πR2

0α), ψ(α) = Ψ(2πR2
0α), h(α) = R0H(2πR2

0α),

(29a)

c(α) = R0C(2πR2
0α), l(α) = R0L(2πR2

0α), λ̃(α) =
R2

0

κ0
λ(2πR2

0α). (29b)

Note that a ∈ [0, A] and α ∈ [0, αmax] where A = 2πR2
0αmax.

A simple application of chain rule shows that the six dimensionless unknown functions x(α), y(α),
ψ(α) , h(α), l(α), and λ̃(α) must satisfy the following system of ODEs on the interval [0, αmax]:

xẋ = cosψ, xẏ = sinψ, x2ψ̇ = 2xh− sinψ, x2ḣ = l + x2ċ, (30a)

l̇ = 2h
[
(h− c)2 +

λ̃

κ̃

]
− 2(h− c)

[
h2 + (h− x−1 sinψ)2

]
, (30b)

˙̃
λ = 2κ̃(h− c)ċ. (30c)

Remark 3.5. It is worth mentioning that if we assume C(a) has the following form:

C(a) = (−0.5C0)(
a− a0
a0

)
[
1− tanh [ξ(a− a0)]

]
, (31)

where C0, ξ, and a0 are certain constants, then

c(α) = R0C(2πR2
0α) = −0.5C0R0(

2πR2
0α− a0
a0

)
[
1− tanh [ξ(2πR2

0α− a0)]
]

= −0.5C0R0
α− a0/(2πR2

0α)

a0/(2πR2
0α)

[
1− tanh [ξ2πR2

0(α− a0
2πR2

0

)]
]
. (32)
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So if we let γ = 2πR2
0ξ and α0 = a0

2πR2
0
, then

c(α) = −0.5C0R0(
α− α0

α0
)
[
1− tanh [γ(α− α0)]

]
. (33)

Similarly, one can show that if C(a) has the form

C(a) = (0.5C0)
[
1− tanh [ξ(a− a0)]

]
, (34)

then
c(α) = 0.5C0R0

[
1− tanh [γ(α− α0)]

]
, (35)

where γ = 2πR2
0ξ and α0 = a0

2πR2
0
.

Remark 3.6. The same argument as the one discussed in Remark 3.3 shows that sensitivities calcu-
lated using dimensionless variables are constant multiples of sensitivities computed using the original
variables.

We conclude this section by making a few comments about the choice of the positive constants
R0 and κ0 that are used in order to nondimensionalize the variables. The following observations
indeed show existence of certain symmetries in the system of ODEs under consideration. Generally,
it is true that symmetries of differential equations can be used to gain valuable information about the
equations under consideration. In §6.2, we will use these observations to examine a conjecture about
the solutions of our system of equations.

1. Let η be any positive number. It is easy to see that (x, y, ψ, h, l, λ̃) is a solution of the ODE
system using (R0, κ0) if and only if (x, y, ψ, h, l, ηλ̃) is a solution of the system using (R0, ηκ0).
That is, changing κ0 merely amounts to scaling λ̃. In our numerical experiments we choose
κ0 = κ so that κ̃ = 1.

2. For the dimensionless arc-length formulation, (x(t), y(t), ψ(t), h(t), l(t), λ̃(t)) is a solution of
the ODE system with c(t) defined using parameters C0, R0, γ, t0 on the interval [0, T ] using
(R0, κ0) if and only if ( 1ηx(ηt), 1ηy(ηt), ψ(ηt), ηh(ηt), ηl(ηt), η2λ̃(ηt)) is a solution of the ODE
system with c(t) defined using parametersC0, ηR0, ηγ,

t0
η on the interval [0, Tη ] using (ηR0, κ0).

3. For the dimensionless area formulation, (x(α), y(α), ψ(α), h(α), l(α), λ̃(α)) is a solution of
the ODE system with c(α) defined using parameters C0, R0, γ, α0 on the interval [0, αmax]
using (R0, κ0) if and only if ( 1ηx(η2α), 1ηy(η2α), ψ(η2α), ηh(η2α), ηl(η2α), η2λ̃(η2α)) is a
solution of the ODE system with c(α) defined using parametersC0, ηR0, η

2γ, α0
η2

on the interval
[0, αmax

η2
] using (ηR0, κ0).

Finally, we remark that when solving the boundary value problem using different values ofR0 (and/or
κ0), in order to be able to compare the results in the sense described above, we also need to change
the boundary conditions accordingly.

10



4 Mathematical framework for sensitivity analysis

In this section we give a brief overview of the theoretical framework of sensitivity analysis for the
system of ODEs dependent on parameters. The subject is well studied in the context of initial value
problems [21] and, as illustrated in this and in the following sections, the same key ideas can be
employed to analyze the sensitivity of boundary value problems such as those that will be considered
in this paper.

Consider the following system of ODEs for the unknown ~x(u) = [x1(u), . . . , xk(u)]T involving
parameters ~p = [p1, . . . , pm]T :

F(~x, ~̇x, ~p) =

f1(~x, ~̇x, ~p)...
fk(~x, ~̇x, ~p)

 = ~0 . (36)

with appropriate initial or boundary conditions. Two key objectives of sensitivity analysis would be to
provide answers to the following questions:

1. How can we compute the rate of change of solution with respect to each of the parameters? That
is, we are interested in computing

∂xi
∂pj

∀ 1 ≤ i ≤ k ∀ 1 ≤ j ≤ m.

2. How can we compute the rate of change of some functional W (~x, ~p) =

∫ umax

0
w(~x, ~p) du of

the solution with respect to each parameter? That is, we are interested in computing

∂W

∂pj
∀ 1 ≤ j ≤ m.

Throughout this document we will refer to ∂xi
∂pj

and ∂W
∂pj

as sensitivities of solution components and
sensitivities of the functional, respectively. Notice that under appropriate smoothness assumptions on
the functions involved, it follows from the chain rule that

∂W

∂pj
=

∫ umax

0

∂w

∂pj
+ (D~xw)

∂~x

∂pj
du, (37)

and so the answer to the first question can be used to answer the second question. However, as we
shall see, if the ultimate objective is to just compute the sensitivity of a functional, there might be
more efficient tools available for the job.

We begin with describing a standard method to answer the first question. Define the sensitivity vectors
~s1, · · · , ~sm as follows:

~s1 =
∂~x

∂p1
=


∂x1
∂p1
...

∂xk
∂p1

 , · · · , ~sm =
∂~x

∂pm
=


∂x1
∂pm

...
∂xk
∂pm

 . (38)
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Now note that

F(~x, ~̇x, p1, · · · , pm) = ~0 =⇒ (D~xF)
∂~x

∂pj
+ (D~̇xF)

∂~̇x

∂pj
+
∂F
∂pj

= ~0 . (39)

That is,

(D~̇xF)~̇sj + (D~xF)~sj +
∂F
∂pj

= ~0 . (40)

So the sensitivities ~sj’s themselves satisfy a system of ODEs (consisting of k × m equations). The
initial or boundary conditions for ~sj are obtained by taking the partial derivatives of the initial and
boundary conditions satisfied by ~x with respect to pj .

By appending system (40) consisting of k × m equations to the original system (36), we can con-
struct a system of ODEs with k × (m+ 1) equations:

F(~x, ~̇x, ~p) = ~0, (41)

(D~̇xF)~̇sj + (D~xF)~sj +
∂F
∂pj

= ~0 . (42)

Solving the above system with a fixed set of values p̃1, · · · , p̃m as parameters and with the appropriate
initial and boundary conditions (as described above) gives the original unknowns together with the

sensitivities ~sj =
∂~x

∂pj
evaluated at (p̃1, · · · , p̃m). If we are only interested in computing sensitivities

with respect to one particular parameter pj , it is enough to append the k equations corresponding to
pj to the original system (and hence solving a system with 2k equations).

Now let us focus on the second question. As it was mentioned, we can answer the second ques-
tion by computing each individual sensitivity using the method explained above (see Equation (37)).
However, there is at least one more approach that can be used to directly compute the sensitivity of
a functional W with respect to the parameters. In this work, we are interested in both sensitivities of
solution components and sensitivities of certain functionals of solutions; hence we will only employ
the first approach. Nevertheless, for the sake of completeness, here we briefly describe this alternative
approach. In order to explain this second approach, which is sometimes referred to as the “adjoint
sensitivity analysis” [14], we need to make a simple observation which we state as a proposition.

Proposition 4.1. Let F and w be as above. Suppose that ~v(u) = [v1(u), . . . , vk(u)]T solves the
following system of ODEs:

d

du

[
~vTD~̇xF

]
− ~vTD~xF = −D~xw. (43)

Then
(D~xw)

∂~x

∂pj
= −~vT ∂F

∂pj
− d

du

[
~vTD~̇xF

∂~x

∂pj

]
. (44)
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Proof. We have

(D~xw)
∂~x

∂pj

(43)
= ~vTD~xF

∂~x

∂pj
− d

du

[
~vTD~̇xF

] ∂~x
∂pj

= ~vTD~xF
∂~x

∂pj
− d

du

[
~vTD~̇xF

∂~x

∂pj

]
+ ~vTD~̇xF

∂~̇x

∂pj
(39)
= ~vT

[
− ∂F
∂pj

]
− d

du

[
~vTD~̇xF

∂~x

∂pj

]
.

It follows that if ~v(u) satisfies (43) then for each 1 ≤ j ≤ m

∂W

∂pj
=

∫ umax

0

∂w

∂pj
+ (D~xw)

∂~x

∂pj
du

=

∫ umax

0

∂w

∂pj
− ~vT ∂F

∂pj
− d

du

[
~vTD~̇xF

∂~x

∂pj

]
du

=

∫ umax

0
(
∂w

∂pj
− ~vT ∂F

∂pj
) du−

[
~vTD~̇xF

∂~x

∂pj

]u=umax

u=0
.

Therefore, if we can choose side conditions for ~v such that the boundary term
[
~vTD~̇xF

∂~x

∂pj

]u=umax

u=0

vanishes, then we can follow this 2-step process to compute the sensitivities for the functional W :

• Step 1: Solve the following problem (with appropriate side conditions as described above) for
the 2k unknowns ~x(u) = [x1(u), . . . , xk(u)]T and ~v(u) = [v1(u), . . . , vk(u)]T :

F(~x, ~̇x, ~p) =


f1(~x, ~̇x, ~p)

...
fk(~x, ~̇x, ~p)

 = ~0,

d
du

[
~vTD~̇xF

]
− ~vTD~xF = −D~xw.

• Step 2: For each 1 ≤ j ≤ m compute

∂W

∂pj
=

∫ umax

0
(
∂w

∂pj
− ~vT ∂F

∂pj
) du.

5 Numerical sensitivity analysis of the Helfrich model

In this section, we illustrate the application of the theoretical considerations of sensitivity analysis by
applying them to the ODEs of our problem of interest and by conducting numerical experiments for
certain parameter choices. In §5.1 we set up a framework for the numerical sensitivity analysis of
our boundary value problem. In §§ 5.2 to 5.5 we will discuss some of our numerical results obtained
using the dimensionless arclength parametrization. The results obtained using the dimensionless area
parametrization, which were consistent with what was observed using the arc-length parametrization,
are presented in Appendix A.
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5.1 Framework for numerical sensitivity analysis of the system

In order to facilitate applying the theoretical considerations in §4 to our system of ODEs, we relabel
the variables as follows:

x1 = x, x2 = y, x3 = ψ, (45a)

x4 = h, x5 = l, x6 = λ̃. (45b)

Using these new labels, we may rewrite our boundary value problem and set up the equations for direct
(or adjoint) sensitivity analysis. For each of our numerical experiments, in addition to the choice of
parametrization (arc-length parametrization vs. area parametrization), we had to make several other
choices including:

1. Choice of spontaneous curvature function (explained below)

2. Choice of boundary conditions (explained below)

Once we set up the boundary value problem, the MATLAB BVP solver ‘bvp4c’ was used to numer-
ically solve the system. Roughly speaking, the domain is partitioned into subintervals and on each
subinterval the solution functions are approximated by polynomials of degree at most 3. Note that a
cubic polynomial has 4 coefficients, so in order to find the approximate solutions, the solver needs to
find 4 coefficients for each unknown function on each subinterval. The equations needed to solve for
the unknown coefficients are obtained by requiring that each approximate solution must be continu-
ous on the entire interval, and also requiring the differential equation hold at certain points on each
subinterval (so the method used by ‘bvp4c’ is in essence a collocation method).

• Case 1: Dimensionless arc-length parametrization
Our original boundary value problem can be written as

F(~x, ~̇x, C0, γ, t0) = ~0 (46)

(B.C. I)

{
x1(0

+) = 0, x3(0
+) = 0, x5(0

+) = 0

x2(T ) = 0, x3(T ) = 0, x6(T ) = λ̃0
, (47)

or

(B.C. II)

{
x1(0

+) = sin θ, x3(0
+) = θ

x2(T ) = 0, x3(T ) = 0, x5(T ) = 0, x6(T ) = λ̃0
, (48)

where θ is a fixed angle and F is as follows:

F(~x, ~̇x, C0, γ, t0) =

f1(~x, ~̇x, C0, γ, t0)
...

f6(~x, ~̇x, C0, γ, t0)



=



ẋ1 − cosx3
ẋ2 − sinx3

ẋ3 − 2x4 + sinx3
x1

ẋ4 − x5
x1
− ċ

ẋ5 − 2x1x4
[
(x4 − c)2 + x6

κ̃

]
+ 2x1(x4 − c)

[
x24 + (x4 − sinx3

x1
)2
]

ẋ6 − 2κ̃ċx4 + 2κ̃cċ


.

(49)
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In the above, the function c(t) represents the spontaneous curvature which, in the existing liter-
ature, as mentioned before, is chosen to have one of the following forms:

Type I: c(t) = 0.5R0C0

[
1− tanh [γ(t− t0)]

]
, (50)

Type II: c(t) = −0.5R0C0
t− t0
t0

[
1− tanh [γ(t− t0)]

]
. (51)

Remark 5.1. Note that the graph of tanh has two horizontal asymptotes. Roughly,

tanhu ≈

{
1 u ≥ 3

−1 u ≤ −3
, (52)

and so

1− tanh [γ(t− t0)] ≈

{
0 t ≥ t0 + 3

γ

2 t ≤ t0 − 3
γ

, (53)

Due to this property, we may choose γ and t0 so that the graph of 1−tanh [γ(t− t0)] possesses
an abrupt jump near t0. However, if the parameters γ and t0 are chosen such that there is no
“abrupt” jump in the graph of 1 − tanh [γ(t− t0)] for positive values of t (in particular, this
happens if t0 >> 0 and γt0 < 3), we say our spontaneous curvature function has a mollifying
property. As we shall see, whether or not the spontaneous curvature function is mollifying can
affect the solution sensitivities.

Remark 5.2. An explanation as to why the first set of boundary conditions Equation (47) phys-
ically make sense can be found in [7]. Here is one way to interpret the second set of boundary
conditions Equation (48) above: We assume the protein coat consists of two segments; a seg-
ment with constant curvature C0 and another segment over which the curvature of the coat
decreases from C0 to 0. Clearly, we do not need to consider the constant curvature portion as
part of our domain (because the shape of this part is already known). The prescribed value of
x1(0

+) should be thought of as the distance from the x2-axis marking the end of the a priori
known spherical part of the coated membrane (with constant curvature C0) and start of the part
of the membrane whose shape we want to determine (the unknown part of the membrane). By
prescribing a value for x3(0+) we set the ”direction” of the generating curve at the starting
point of the unknown part of the membrane. When we use type (II) boundary conditions, our
goal is to determine the shape of the part of the membrane that we do not know a priori.

Remark 5.3. Although both types of boundary conditions, Equations (47) and (48), are taken
from the existing literature, it seems to us that each type comes with certain deficiencies that we
believe should be clearly discussed.

– In the first set of boundary conditions, x1(0+) = 0 and x5(0
+) = 0 correspond to

r(0+) = 0 and L(0+) = 0, respectively. However, L(s) = r(s)[H(s) − C(s)]′. So it
seems that these equalities are not independent. In practice, for all of our simulations
the value of r(0+) is set to be a number close to zero rather than zero, and it is scaled
appropriately for the dimensionless parametrizations. This is done primarily in order to
avoid numerical difficulties that may arise as a result of the presence of the term 1

r(s) in
the equations. As a byproduct, this will also take care of the dependency described above.
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– In the second set of boundary conditions the side condition x5(0+) = 0 is replaced by
x5(T ) = 0. Hence the above-mentioned dependency does not exist anymore. Neverthe-
less, it seems to us that the prescribed value of x1(0+) is rather arbitrary. As explained
above, here the goal was to have a nonzero value for x1(0+) marking the end of the spher-
ical part of the coat, however, we could not find any convincing geometric justification as
to why sin θ is a good choice for this nonzero value.

Although we were aware of these issues, in order to make our results relatable to the existing
literature on the subject, we decided not to depart from the standard boundary conditions used
in the literature.

The energy functional of interest, that is, the total elastic bending energy of the membrane can
be represented by

W (~x,C0, γ, α0) ∼
∫ T

0
[x4(t)− c(t)]2x1(t) dt. (54)

Indeed, if we use the change of variable s = R0t, then∫ T

0
[h(t)− c(t)]2x(t) dt =

∫ T

0
R2

0

[
H(R0t)− C(R0t)

]2 r(R0t)

R0
dt

=

∫ R0T

0
R0[H(s)− C(s)]2r(s)

ds

R0

=

∫ S

0
[H(s)− C(s)]2r(s) ds ∼W. (55)

In order to ensure that our notations are consistent with what was discussed in §4, we also
introduce p1, p2, and p3 as follows:

p1 = C0, p2 = γ, p3 = t0. (56)

Following what was discussed in §4, for each 1 ≤ j ≤ 3, in order to find the sensitivities

~sj =
∂~x

∂pj
, it is enough to solve the following system of ODEs for the unknowns ~x(t) and ~sj(t):

{
F(~x, ~̇x, p1, p2, p3) = ~0 (six scalar ODEs)

(D~̇xF)~̇sj + (D~xF)~sj + ∂F
∂pj

= ~0 (six scalar ODEs)
. (57)

The boundary conditions for the sensitivities can be obtained by taking the derivative of the
boundary conditions for the original unknowns x1, · · · , x6. For example, if we decide to use
the first type of boundary conditions, then we will equip the above system of ODEs with the
following boundary conditions:

x1(0
+) = 0, x3(0

+) = 0, x5(0
+) = 0,

x2(T ) = 0, x3(T ) = 0, x6(T ) = λ̃0,

sj1(0
+) = 0, sj3(0

+) = 0, sj5(0
+) = 0,

sj2(T ) = 0, sj3(T ) = 0, sj6(T ) = 0 .

(58)

16



In the above sji denotes the ith component of the vector ~sj , that is, sji(t) =
∂xi(t)

∂pj
. Once

we find each ~sj , we can use the following formula to compute the sensitivities of our energy
functional:

∀ 1 ≤ j ≤ 3
∂W

∂pj
∼
∫ T

0

∂w

∂pj
+ (D~xw)~sj dt. (59)

where w(~x, p1, p2, p3) = [x4(t)− c(t)]2x1(t). Sometimes we denote the integrand in the above
integral by Dw

Dpj
. In order to set up the above system and also compute the sensitivities of the

energy functional W , in particular we need to compute the matrices D~̇xF, D~xF and the vector
∂F
∂pj

for each 1 ≤ j ≤ 3. The details can be found in Appendix B.

• Case 2: Dimensionless area parametrization
Our original boundary value problem can be written as

F(~x, ~̇x, C0, γ, α0) = ~0 (60)

(B.C. I)

{
x1(0

+) = 0, x3(0
+) = 0, x5(0

+) = 0

x2(αmax) = 0, x3(αmax) = 0, x6(αmax) = λ̃0
, (61)

or

(B.C. II)

{
x1(0

+) = sin θ, x3(0
+) = θ

x2(αmax) = 0, x3(αmax) = 0, x5(αmax) = 0, x6(αmax) = λ̃0
, (62)

where θ is a fixed angle and F is as follows:

F(~x, ~̇x, C0, γ, α0) =

f1(~x, ~̇x, C0, γ, α0)
...

f6(~x, ~̇x, C0, γ, α0)



=



ẋ1 − cosx3
x1

ẋ2 − sinx3
x1

ẋ3 − 2x4x1 + sinx3
x21

ẋ4 − x5
x21
− ċ

ẋ5 − 2x4
[
(x4 − c)2 + x6

κ̃

]
+ 2(x4 − c)

[
x24 + (x4 − sinx3

x1
)2
]

ẋ6 − 2κ̃ċx4 + 2κ̃cċ


. (63)

In the above, the function c(α) represents the spontaneous curvature which, as was discussed in
previous sections, is chosen to have one of the following forms:

Type I: c(α) = 0.5R0C0

[
1− tanh [γ(α− α0)]

]
, (64)

Type II: c(α) = −0.5R0C0
α− α0

α0

[
1− tanh [γ(α− α0)]

]
. (65)

The energy functional of interest, that is, the total elastic bending energy of the membrane can
be represented by

W (~x,C0, γ, α0) ∼
∫ αmax

0
[x4(α)− c(α)]2 dα. (66)
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Indeed, if we use the change of variable a = 2πR2
0α, then∫ αmax

0
[h(α)− c(α)]2 dα =

∫ αmax

0
R2

0

[
H(2πR2

0α)− C(2πR2
0α)
]2
dα

=

∫ 2πR2
0αmax

0
R2

0[H(a)− C(a)]2
da

2πR2
0

=
1

2π

∫ A

0
[H(a)− C(a)]2 da ∼W. (67)

Again, in order to ensure that our notations are consistent with what was discussed in §4, we
also introduce p1, p2, and p3 as follows:

p1 = C0, p2 = γ, p3 = α0. (68)

Following what was discussed in §4, for each 1 ≤ j ≤ 3, in order to find the sensitivities

~sj =
∂~x

∂pj
, it is enough to solve the following system of ODEs for the unknowns ~x(α) and

~sj(α): {
F(~x, ~̇x, p1, p2, p3) = ~0 (six scalar ODEs)

(D~̇xF)~̇sj + (D~xF)~sj + ∂F
∂pj

= ~0 (six scalar ODEs)
. (69)

The boundary conditions for the sensitivities can be obtained by taking the derivative of the
boundary conditions for the original unknowns x1, · · · , x6. For example, if we decide to use
the second type of boundary conditions, then we will equip the above system of ODEs with the
following boundary conditions:

x1(0
+) = sin θ, x3(0

+) = θ,

x2(αmax) = 0, x3(αmax) = 0, x5(αmax) = 0, x6(αmax) = λ̃0,

sj1(0
+) = 0, sj3(0

+) = 0,

sj2(αmax) = 0, sj3(αmax) = 0, sj5(αmax) = 0, sj6(αmax) = 0 .

(70)

As before sji denotes the ith component of the vector ~sj , that is, sji(α) =
∂xi(α)

∂pj
. Once

we find each ~sj , we can use the following formula to compute the sensitivities of our energy
functional:

∀ 1 ≤ j ≤ 3
∂W

∂pj
∼
∫ αmax

0

∂w

∂pj
+ (D~xw)~sj dα. (71)

where w(~x, p1, p2, p3) = [x4(α) − c(α)]2. The integrand in the above integral is sometimes
denoted by Dw

Dpj
. In order to set up the above system and also compute the sensitivities of the

energy functional W , in particular we need to compute the matrices D~̇xF, D~xF and the vector
∂F
∂pj

for each 1 ≤ j ≤ 3. The details can be found in Appendix B.

Remark 5.4. Alternatively, according to the adjoint method, in order to compute the sensitivities of
the energy functional W , we may use the following formula:

∂W

∂pj
∼
∫ umax

0
(
∂w

∂pj
− ~vT ∂F

∂pj
) du, (72)
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where, for example, in the case where we use the dimensionless area parametrization with boundary
conditions of type (I), umax and u in the above formula stand for α and αmax, respectively, and the

vector function ~v =

v1...
v6

 can be computed by finding a solution of the following system of ODEs

(with 12 scalar unknown functions):

F(~x, ~̇x, p1, p2, p3) = ~0,
d
dα

[
~vTD~̇xF

]
− ~vTD~xF = −D~xw,

x1(0
+) = 0, x3(0

+) = 0, x5(0
+) = 0,

x2(αmax) = 0, x3(αmax) = 0, x6(αmax) = λ̃0,

v2(0
+) = 0, v4(0

+) = 0, v6(0
+) = 0,

v1(αmax) = 0, v4(αmax) = 0, v5(αmax) = 0.

The following proposition justifies the particular choice of boundary conditions for certain compo-
nents of ~v in the above boundary value problem.

Proposition 5.1. Let ~x and F be as above. Suppose that

x1(0
+) = 0, x3(0

+) = 0, x5(0
+) = 0,

x2(αmax) = 0, x3(αmax) = 0, x6(αmax) = λ̃0.

If ~v(α) =

v1(α)
...

v6(α)

 satisfies

v2(0
+) = 0, v4(0

+) = 0, v6(0
+) = 0,

v1(αmax) = 0, v4(αmax) = 0, v5(αmax) = 0.

then
[
~vTD~̇xF ∂~x

∂pj

]α=αmax

α=0
= 0.

Proof. At α = 0+ we have

~vT (0+)D~̇xF|α=0+
∂~x(0+)

∂pj
=
[
v1(0

+) · · · v6(0
+)
] [

∂F
∂ẋ1
|α=0+ · · · ∂F

∂ẋ6
|α=0+

]


0
x2(0+)
∂pj

0
x4(0+)
∂pj

0
x6(0+)
∂pj


=
[
v1(0

+) · · · v6(0
+)
](∂x2(0+)

∂pj

∂F
∂ẋ2
|α=0+ +

∂x4(0
+)

∂pj

∂F
∂ẋ4
|α=0+ +

∂x6(0
+)

∂pj

∂F
∂ẋ6
|α=0+

)
=
∂x2(0

+)

∂pj
v2(0

+) +
∂x4(0

+)

∂pj
v4(0

+) +
∂x6(0

+)

∂pj
v6(0

+) = 0.
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In the above, we used v2(0+) = v4(0
+) = v6(0

+) = 0 and the fact that D~̇xF is the identity matrix.

Similarly, at α = αmax, we have

~vT (αmax)D~̇xF|α=αmax

∂~x(αmax)

∂pj

=
[
v1(αmax) · · · v6(αmax)

] [
∂F
∂ẋ1
|α=αmax · · · ∂F

∂ẋ6
|α=αmax

]


x1(αmax)
∂pj

0
0

x4(αmax)
∂pj

x5(αmax)
∂pj

0


=
[
v1(αmax) · · · v6(αmax)

](∂x1(αmax)

∂pj

∂F
∂ẋ1
|α=αmax +

∂x4(αmax)

∂pj

∂F
∂ẋ4
|α=αmax

+
∂x5(αmax)

∂pj

∂F
∂ẋ5
|α=αmax

)
=
∂x1(αmax)

∂pj
v1(αmax) +

∂x4(αmax)

∂pj
v4(αmax) +

∂x5(αmax)

∂pj
v5(αmax) = 0.

In the above, we used v1(αmax) = v4(αmax) = v5(αmax) = 0 and the fact that D~̇xF is the identity
matrix.

5.2 Dimensionless arc-length formulation – Type I spontaneous curvature

The spontaneous curvature function used is:

c(t) = 0.5C0R0

[
1− tanh

[
γ(t− t0)

]]
. (73)

Note that, for each choice of C0, c(t) is a constant multiple of F (t) = 1− tanh
[
γ(t− t0)

]
. So F (t)

is the function that determines the shape of the spontaneous curvature. The graph of F (t) is depicted
in Figure 2

Boundary conditions used for the original unknowns are:{
x1(0

+) = 0, x3(0
+) = 0, x5(0

+) = 0,

x2(T ) = 0, x3(T ) = 0, x6(T ) = λ̃0.
(74)

The boundary conditions for the corresponding sensitivities are all set to be zero.
Our choices for the input parameters are given in Table 1.
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Parameter Input used
R0 (nm) 80

C0 (nm−1) various values in [0, 0.02]

γ = ξ ∗R0 20

t0 = s0
R0

1

λ̃0 = λ0R
2
0/κ0 12.8

Domain = [0, T ] [0, 5]

Table 1: Parameters used in the model. The corresponding diagrams are depicted in Figure 2.

R0 is chosen such that t0 = 1. A brief explanation of the choice s0 = 80 and T = 5 is given in §6. γ
is chosen such that there will be a sharp transition at t0 = 1. κ0 is chosen to be equal to κ. (A range
of acceptable values for κ and λ0 can be found in [7].)

We organize our results as follows: graphs of energy sensitivities with respect to parameters C0,
λ, and t0 are displayed on the left column of Figure 2B, Figure 2C, and Figure 2D, respectively; the
graphs of the dimensionless curvature sensitivities with respect to parameters involved are depicted
on the right column of these panels.

Here we make two key observations. First, we notice that for our choice of the type of boundary
conditions (B.C. of type I, Equation (47)) and spontaneous curvature function, the energy sensitivity
graphs do not intersect the horizontal axis (that is, there is no critical point). As we shall see later, this
seems to be in correlation with certain interesting properties of the final shape of the membrane. Sec-
ond, notice that for our choice of boundary conditions (B.C. of type I, Equation (47)) and spontaneous
curvature function (which possesses a sharp transition), there is an abrupt change in curvature sensi-
tivities near the location where the sharp transition in spontaneous curvature function occurs, which,
of course, is expected. As we shall soon see, the graphs of curvature sensitivities will smear out if we
smooth the transition in the spontaneous curvature function.
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Figure 2: (A) Shape of the spontaneous curvature function with γ = 20 and t0 = 1. (B) The red
curve on the left depicts ∂W

∂C0
|(C0,γ,t0)=(C0,20,1) for 0 ≤ C0 ≤ 0.02. The blue curve on the right depicts

∂h
∂C0
|(C0,γ,t0)=(0.02,20,1) for 0 ≤ t ≤ 5. (C) The red curve on the left depicts ∂W

∂γ |(C0,γ,t0)=(C0,20,1) for
0 ≤ C0 ≤ 0.02. The blue curve on the right depicts ∂h

∂γ |(C0,γ,t0)=(0.02,20,1) for 0 ≤ t ≤ 5. (D) The red
curve on the left depicts ∂W

∂t0
|(C0,γ,t0)=(C0,20,1) for 0 ≤ C0 ≤ 0.02. The blue curve on the right depicts

∂h
∂t0
|(C0,γ,t0)=(0.02,20,1) for 0 ≤ t ≤ 5. Note that W is a scalar multiple of the total elastic bending

energy of the membrane and h(t) is a scalar multiple of the mean curvature at the corresponding points
on the membrane.

5.3 Dimensionless arc-length formulation – Mollifying type I spontaneous curvature

All parameters are exactly the same as §5.2 except γ. This time we choose γ to be equal to 2.5 so that
s0γ < 3. This choice of γ and s0 smooths the transition in the spontaneous curvature function (see
Figure 3A). As a result we will see that the graphs of curvature sensitivities (diagrams in the second
column of Figure 3B, C, and D) are smeared out (compared with what was observed in §5.2). Notice
that this particular change in the shape of the spontaneous curvature function did not have any effect
on the number of horizontal intercepts of the energy sensitivities.
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Figure 3: (A) Shape of the spontaneous curvature function with γ = 2.5 and t0 = 1. (B) The red
curve on the left depicts ∂W

∂C0
|(C0,γ,t0)=(C0,2.5,1) for 0 ≤ C0 ≤ 0.02. The blue curve on the right depicts

∂h
∂C0
|(C0,γ,t0)=(0.02,2.5,1) for 0 ≤ t ≤ 5. (C) The red curve on the left depicts ∂W

∂γ |(C0,γ,t0)=(C0,2.5,1) for
0 ≤ C0 ≤ 0.02. The blue curve on the right depicts ∂h

∂γ |(C0,γ,t0)=(0.02,2.5,1) for 0 ≤ t ≤ 5. (D) The red
curve on the left depicts ∂W

∂t0
|(C0,γ,t0)=(C0,2.5,1) for 0 ≤ C0 ≤ 0.02. The blue curve on the right depicts

∂h
∂t0
|(C0,γ,t0)=(0.02,2.5,1) for 0 ≤ t ≤ 5. Note that W is a scalar multiple of the total elastic bending

energy of the membrane and h(t) is a scalar multiple of the mean curvature at the corresponding points
on the membrane.

5.4 Dimensionless arc-length formulation – Type II spontaneous curvature

The spontaneous curvature function used is:

c(t) = −0.5C0R0
t− t0
t0

[
1− tanh

[
γ(t− t0)

]]
. (75)
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Note that for each choice of C0, c(t) is a constant multiple of F (t) = − t−t0
t0

[
1 − tanh [γ(t− t0)]

]
.

The graph of F (t) is depicted in Figure 4A. Boundary conditions used for the original unknowns are:{
x1(0

+) = sin (0.9π), x3(0
+) = 0.9π,

x2(T ) = 0, x3(T ) = 0, x5(T ) = 0, x6(T ) = 0.
(76)

The boundary conditions for the corresponding sensitivities are all set to be zero.
Our choices for the input parameters are given in Table 2.

Parameter Input used
R0 (nm) 200

C0 (nm−1) various values in [0, 4.5
1000 ]

γ = ξR0 30

t0 = s0
R0

30

Domain = [0, T ] [0, 100]

Table 2: Parameters used in the model. The corresponding diagrams are depicted in Figure 4.

This particular choice of parameters is in agreement with [25].
We organize our results as follows: graphs of energy sensitivities with respect to parameters C0,

λ, and t0 are displayed on the left column of Figure 4B, C, and D, respectively; the graphs of the
dimensionless curvature sensitivities with respect to parameters involved are depicted on the right
column of these panels. We make two observations. First, notice that for our choice of the type of
boundary conditions (B.C. of type II, Equation (48)) and spontaneous curvature function, the energy
sensitivity graph with respect to C0 indeed intersects the horizontal axis. As we shall see, this seems
to be in correlation with certain interesting properties of the final shape of the membrane. Second,
notice that for our choice of boundary conditions and spontaneous curvature function (which possesses
a sharp transition), the graphs of curvature sensitivities have sharp bends near the location where
the sharp transition in spontaneous curvature function occurs. As we shall soon see, the graphs of
curvature sensitivities will be smoother near t0 if we smooth the sharp transition in the spontaneous
curvature function.
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Figure 4: (A) Shape of the spontaneous curvature function with γ = 30 and t0 = 30. (B)
The red curve on the left depicts ∂W

∂C0
|(C0,γ,t0)=(C0,30,30) for 0 ≤ C0 ≤ 0.0044. The blue curve

on the right depicts ∂h
∂C0
|(C0,γ,t0)=(0.0044,30,30) for 0 ≤ t ≤ 100. (C) The red curve on the

left depicts ∂W
∂γ |(C0,γ,t0)=(C0,30,30) for 0 ≤ C0 ≤ 0.0044. The blue curve on the right depicts

∂h
∂γ |(C0,γ,t0)=(0.0044,30,30) for 0 ≤ t ≤ 100. (D) The red curve on the left depicts ∂W

∂t0
|(C0,γ,t0)=(C0,30,30)

for 0 ≤ C0 ≤ 0.0044. The blue curve on the right depicts ∂h
∂t0
|(C0,γ,t0)=(0.0044,30,30) for 0 ≤ t ≤ 100.

Note that W is a scalar multiple of the total elastic bending energy of the membrane and h(t) is a
scalar multiple of the mean curvature at the corresponding points on the membrane.

5.5 Dimensionless arc-length formulation – Mollifying type II spontaneous curvature

Almost all parameters are the same those used in §5.4 except for the value chosen for γ. This time we
choose γ to be equal to 0.08 such that s0γ < 3. This choice of γ and s0 further smooths the transition
in the spontaneous curvature function (see Figure 5A). As a result we will see that the graphs of
curvature sensitivities (diagrams in the second column of Figure 5B, C, and D) are smoother near
t0 = 30 (compared with what was observed in §5.4).
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Figure 5: (A) Shape of the spontaneous curvature function with γ = 0.08 and t0 = 30.
(B) The red curve on the left depicts ∂W

∂C0
|(C0,γ,t0)=(C0,0.08,30) for 0 ≤ C0 ≤ 0.004. The

blue curve on the right depicts ∂h
∂C0
|(C0,γ,t0)=(0.004,0.08,30) for 0 ≤ t ≤ 100. (C) The red

curve on the left depicts ∂W
∂γ |(C0,γ,t0)=(C0,0.08,30) for 0 ≤ C0 ≤ 0.004. The blue curve on

the right depicts ∂h
∂γ |(C0,γ,t0)=(0.004,0.08,30) for 0 ≤ t ≤ 100. (D) The red curve on the left

depicts ∂W
∂t0
|(C0,γ,t0)=(C0,0.08,30) for 0 ≤ C0 ≤ 0.004. The blue curve on the right depicts

∂h
∂t0
|(C0,γ,t0)=(0.004,0.08,30) for 0 ≤ t ≤ 100. Note that W is a scalar multiple of the total elastic bend-

ing energy of the membrane and h(t) is a scalar multiple of the mean curvature at the corresponding
points on the membrane.

6 Results and conclusions

6.1 Insights obtained from sensitivity analyses on membrane shapes

• Remarks on the size of the domain.
As discussed earlier, we use a MATLAB BVP solver to approximate the solution to our system
of ODEs. For this reason, the dimensionless size of the domain (that is, the interval on which we
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want to solve the system), the mesh size, and the initial guess for solution (which is given to the
solver as an input) can play key roles in performance of the method and accuracy of the results.
In each of our numerical experiments we normally start with dividing the interval into about
100 subintervals and then use a finer mesh if we run into trouble. As expected, we observed that
for larger domain size, finer partitions are needed for a good performance. In our simulations
we adhered to the following rules with regard to the total size of the domain:

1. Dimensionless Arc-length Formulation: Total size is taken to be 2-5 times the size of the
coated region.

2. Dimensionless Area Formulation: Total size is taken to be 4-25 times the size of the coated
region.

It is important to mention that there are experimental measurements that can provide an estimate
of the size of the coat [13]. In some of our simulations, we used a0 = 20106 nm2 as an estimate
of the area of the coat [7]. The corresponding dimensionless area is obtained by first choosing
a number R0 and then computing a0

2πR2
0
. We mention in passing that, although theoretically the

value chosen for R0 should not have any effect on the solution of the system, in practice, when
using a numerical method to solve the problem, the value of R0 can affect the performance of
the numerical solver. Our chosen values for R0 can be found in Tables 1 to 4 displayed in §5
and Appendix A.

We know that the area of a spherical cap corresponding to arc-length s is approximately equal
to πs2 (assuming s <<radius of the sphere). For this reason, it is not completely unreasonable
to use the equation πs20 = 20106 to come up with an estimate of the length corresponding to the
coated region (which gives s0 ≈ 80 nm).

• Should we expect the area formulation and the arc-length formulation produce the exact
same results?
Let’s assume we have fixed the values of a0, s0, C0, and ξ. An important question is the follow-
ing: Is it reasonable to expect that we should obtain the exact same answers using arc-length
formulation and area formulation? A little bit of deliberation tells us that the answer is no! For
one thing, what the exact relationship between a0 and s0 should be is not known in advance.
More importantly, although the spontaneous curvature function used for the area formulation has
the same form as the spontaneous curvature function used in arc-length formulation, the area
spontaneous curvature used in our simulations is not exactly the function obtained by transform-
ing C(s) = 0.5C0F (s) into a function of a using the relationship a = g(s) = 2π

∫ s
0 r(u) du.

As discussed in Remark 3.4, the area spontaneous curvature function that would have produced
the same answer would have been Ĉ(a) = 0.5C0F (g−1(a)). For example, in the case where
F (s) = [1 − tanh[ξ(s − s0)]], we would obtain Ĉ(a) = 0.5C0[1 − tanh[ξ(g−1(a) − s0)]]
which, in part due to the presence of the function g−1, does not necessarily have the same form
as the form that is actually prescribed for C(a) in our simulations.

• On the importance of boundary conditions and the value of λ̃0.
As it was noted in previous sections, we ran our simulations with two different sets of boundary
conditions representing distinct physical constraints/assumptions. Unfortunately, as opposed to
the case of initial value problems, there is no general mathematical theory that can be used to
ensure the existence and uniqueness of solutions to boundary value problems such as the one
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studied in this work. One thing that became clear to us was that the performance of the MAT-
LAB BVP solver ‘bvp4c’ was highly sensitive to the chosen boundary conditions, in particular
to the value of λ̃0. In fact, in some cases, a small change in the value of λ̃0 can result in the
appearance of linear algebraic systems with singular coefficient matrices in the process of nu-
merically solving the ODE system. At this point, it is not clear whether this is a theoretical issue
related to existence of solutions, or whether this should be explained by exploring the stability
properties of the numerical method used to solve the system.

• A cleverly chosen spontaneous curvature can smear out solution sensitivities.
As we mentioned before, whether or not the spontaneous curvature function is mollifying can
affect the solution sensitivities. Our simulations provide numerical evidence for the conjecture
that the smoother the transition between nonzero part of F (u) to the zero part of F (u) is, the
less likely it will be to have abrupt jumps in the graphs of solution sensitivities. Notice that
the shape of the function F over the transition region can be tuned by cleverly choosing the
parameters γ and t0 (or α0).

• Is there any correlation between sensitivity diagrams and the final shape of the mem-
brane?
One motivation of this work was to gain more insight into the circumstances that would result
in bud-shaped membranes versus those that would give pearl-shaped membranes. To that end,
we performed various numerical experiments to see whether we could find evidence indicating
positive or negative correlation between input data of the problem (such as type of the sponta-
neous curvature, parameters used in the expression of the spontaneous curvature, and type of
the boundary conditions) and the final shape of the membrane.

The following observations/conjectures are in agreement with all of our results, parts of which
are depicted in Figure 6.

1. Our results provide numerical evidence for the conjecture that there might be a connection
between the behavior of the energy sensitivity with respect to C0 and the appearance of
turning points in the generating curve of the surface of the membrane and formation of
pearls (loops). In particular, as it becomes evident by comparing the diagrams displayed
in panels A, B, C, D, and G of Figure 6 with those displayed in panels E, F, and H, we
observed that when W did not have any critical point (as a function of C0), that is, when
the energy sensitivity function with respect to C0 did not intersect the horizontal axis, no
loops were formed.

2. Previously we observed that using a mollifying spontaneous curvature function can smear
out the solution sensitivities. However, the type of spontaneous curvature function (that is
type I or type II) or whether the function is mollifying or not, does not appear to preclude
the possibility of formation of pearls.

3. For a fixed domain size and coat size, it is more likely to see an energy sensitivity function
with oscillatory behavior about the horizontal axis (indicating existence of zeros) when we
use the second type of boundary conditions. Indeed, in our experiments, every time we
used the first set of boundary conditions, we noticed that the resulting energy sensitivity
function (as a function of C0) will not intersect the horizontal axis, and subsequently no
pearls were formed.
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6.2 Examining a conjecture related to the ‘pearling’ transition

In our discussions with researchers working on the subject, we noticed that some implicitly believe
in the conjecture that “the slope of the transition part of the spontaneous curvature function is a key
factor in whether or not pearls will be formed; in particular, there is a correlation between formation
of pearls and not having sharp transitions (big slopes) in the spontaneous curvature function used in
the numerical solution of the boundary value problem”.

The purpose of this section is to provide a simple argument that disproves the validity of the above
conjecture in the generality stated above. Indeed, in what follows we will show that there exist spon-
taneous curvature functions with very large slopes on their transition regions that ultimately result in
formation of pearls. To be concrete, we focus on the dimensionless arc-length parametrization, how-
ever, an analogous argument can be applied to the dimensionless area parametrization.

Let (C0, R0, γ, t0) be a set of parameters with γt0 > 3 that results in formation of pearls on the
domain [0, T ]. Note that since γt0 > 3, the value of the spontaneous curvature function at 0 is ap-
proximately C0R0 and it decreases to near zero over the interval [0, t0 + 3

γ ]. As we discussed in §3, if
x(t) and y(t) are the first two components of the corresponding solution (note that R0x(t) and R0y(t)
are the coordinates of the generating curve of the surface of the membrane), then for any constant
η > 0, the functions 1

ηx(ηt) and 1
ηy(ηt) will be the first two components of the solution on [0, Tη ]

using parameters (C0, ηR0, ηγ,
t0
η ). In particular, the shape of the solution curve (and the correspond-

ing surface) using these new parameters will be the same as the shape of the solution curve (and the
corresponding surface) using the original parameters. If one has pearls, then the other will also have
pearls. Now note that (ηγ) t0η = γt0 > 3 and so the value of the corresponding spontaneous curva-
ture at 0 is approximately (C0)(ηR0) and the spontaneous curvature function decreases to nearly zero
over the interval [0, t0η + 3

ηγ ]. We can set the number η to be as large as we want. The larger the
η, the smaller the interval of transition will be and the larger the starting value ηC0R0 will be. That
is, for a very large η, the corresponding spontaneous curvature function must decrease from the huge
value ηC0R0 to zero over the very small interval [0, t0η + 3

ηγ ], which means it will have a huge slope.
Nevertheless, since the original parameters resulted in the formation of pearls, this new spontaneous
curvature function will also result in the formation of pearls.

6.3 Concluding remarks

In this study, we conducted sensitivity analysis on the well-known Helfrich model for lipid bilayer
bending in the context of the spontaneous curvature function. We observed some interesting phe-
nomena in our numerical experiments that relate the sensitivity of the energy with respect to the free
parameters in the spontaneous curvature function to the shape of the membrane. Given the wide
usage of the Helfrich model for simulating membrane bending phenomena that have been reported
experimentally, our approach of using sensitivity analysis can provide some insight into how one can
design input functions and parameters to this system of ODEs. Our experiments also led us to make
certain new, arguably nonobvious, conjectures about the behavior of the solution. Clearly even if
results of numerical experiments using a million different sets of inputs display positive correlation
between certain output variables, that does not necessarily mean that theoretically there should be
positive correlation between the output variables regardless of what the inputs are. Nevertheless, such
results may help us make conjectures that were not immediately obvious from the outset, and this is
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in fact a major way that science progresses. This work by no means should be viewed as the final
word on the parametric sensitivity analysis of the shape equations in Helfrich energy model. Rather,
we suggest that it is merely a first step toward better understanding the role of parameters involved in
shape equations, particularly in the context of numerical simulations. Indeed, future directions include
identifying suitable ‘bump’ functions for the spontaneous curvature function and extension of these
methods to solutions in general coordinates.
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A Some numerical results for dimensionless area parametrization

In this appendix we will present some of our numerical results obtained using the dimensionless area
parametrization.

A.1 Dimensionless area formulation – Type I spontaneous curvature

The spontaneous curvature function used is:

c(α) = 0.5C0R0

[
1− tanh

[
γ(α− α0)

]]
. (77)

Note that for each choice of C0, c(α) is a constant multiple of F (α) = 1 − tanh
[
γ(α − α0)

]
. So

F (α) is the function that determines the shape of the spontaneous curvature. The graph of F (α) is
depicted in Figure 7.

Boundary conditions used for the original unknowns are:{
x1(0

+) = 0, x3(0
+) = 0, x5(0

+) = 0,

x2(αmax) = 0, x3(αmax) = 0, x6(αmax) = λ̃0.
(78)

The boundary conditions for the corresponding sensitivities are all set to be zero.
Our choices for the input parameters are given in Table 3.

Parameter Input used
R0 (nm) 400√

50

C0 (nm−1) various values in [0, 0.02]

γ = ξ ∗ 2πR2
0 40

α0 = a0
2πR2

0
1

λ̃0 = λ0R
2
0/κ0 6.4

Domain = [0, αmax] [0, 15]

Table 3: Parameters used in the model. The corresponding diagrams are depicted in Figure 7.

R0 is chosen such that α0 = 1. A brief explanation of the choice a0 = 2πR2
0α0 ≈ 20106 and

αmax = 15 is given in §6. γ is chosen such that there will be a sharp transition at α0 = 1.

We organize our results as follows: graphs of energy sensitivities with respect to parameters C0,
λ, and t0 are displayed on the left column of Figure 7B, C, and D, respectively; the graphs of the
dimensionless curvature sensitivities with respect to parameters involved are depicted on the right
column of these panels. Again we make two key observations. First, notice that for our choice of the
type of boundary conditions (B.C. of type I, Equation (61)) and spontaneous curvature function, the
energy sensitivity graphs do not intersect the horizontal axis. Second, notice that for our choice of
boundary conditions and spontaneous curvature function (which possesses a sharp transition), there is
an abrupt change in curvature sensitivities near the location where the sharp transition in spontaneous
curvature function occurs. The graphs of curvature sensitivities will smear out if we smooth the
transition in the spontaneous curvature function.
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Figure 7: (A) Shape of the spontaneous curvature function with γ = 40 and α0 = 1. (B) The red
curve on the left depicts ∂W

∂C0
|(C0,γ,α0)=(C0,40,1) for 0 ≤ C0 ≤ 0.02. The blue curve on the right depicts

∂h
∂C0
|(C0,γ,α0)=(0.02,40,1) for 0 ≤ α ≤ 15. (C) The red curve on the left depicts ∂W

∂γ |(C0,γ,α0)=(C0,40,1)

for 0 ≤ C0 ≤ 0.02. The blue curve on the right depicts ∂h
∂γ |(C0,γ,α0)=(0.02,40,1) for 0 ≤ α ≤ 15. (D)

The red curve on the left depicts ∂W
∂t0
|(C0,γ,α0)=(C0,40,1) for 0 ≤ C0 ≤ 0.02. The blue curve on the

right depicts ∂h
∂α0
|(C0,γ,t0)=(0.02,40,1) for 0 ≤ α ≤ 15. Note that W is a scalar multiple of the total

elastic bending energy of the membrane and h(α) is a scalar multiple of the mean curvature at the
corresponding points on the membrane.

A.2 Dimensionless area formulation - Mollifying type I spontaneous curvature

All parameters are exactly the same as in §A.1 except γ. This time we choose γ to be equal to 2.5 such
that α0γ < 3. This choice of γ and α0 smooths the transition in the spontaneous curvature function
(see Figure 8A). As a result we will see that the graphs of curvature sensitivities (diagrams in the
second column of Figure 8B,C, and D) are smeared out (compared with what was observed in §A.1).
Notice that this particular change in the shape of the spontaneous curvature function did not have any
effect on the number of horizontal intercepts of the energy sensitivities.
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Figure 8: (A) Shape of the spontaneous curvature function with γ = 2.5 and α0 = 1. (B) The red
curve on the left depicts ∂W

∂C0
|(C0,γ,α0)=(C0,2.5,1) for 0 ≤ C0 ≤ 0.02. The blue curve on the right depicts

∂h
∂C0
|(C0,γ,α0)=(0.02,2.5,1) for 0 ≤ α ≤ 15. (C) The red curve on the left depicts ∂W

∂γ |(C0,γ,α0)=(C0,2.5,1)

for 0 ≤ C0 ≤ 0.02. The blue curve on the right depicts ∂h
∂γ |(C0,γ,α0)=(0.02,2.5,1) for 0 ≤ α ≤ 15. (D)

The red curve on the left depicts ∂W
∂α0
|(C0,γ,α0)=(C0,2.5,1) for 0 ≤ C0 ≤ 0.02. The blue curve on the

right depicts ∂h
∂α0
|(C0,γ,α0)=(0.02,2.5,1) for 0 ≤ α ≤ 15. Note that W is a scalar multiple of the total

elastic bending energy of the membrane and h(α) is a scalar multiple of the mean curvature at the
corresponding points on the membrane.

A.3 Dimensionless area formulation – Type II spontaneous curvature

The spontaneous curvature function used is:

c(α) = −0.5C0R0
α− α0

α0

[
1− tanh

[
γ(α− α0)

]]
. (79)

Note that for each choice of C0, c(t) is a constant multiple of F (α) = −α−α0
α0

[
1−tanh

[
γ(α−α0)

]]
.

So F (α) is the function that determines the shape of the spontaneous curvature. The graph of F (α) is
depicted in Figure 9A.

34



Boundary conditions used for the original unknowns are:{
x1(0

+) = sin (0.3π), x3(0
+) = 0.3π,

x2(αmax) = 0, x3(αmax) = 0, x5((αmax) = 0, x6((αmax) = 0.
(80)

The boundary conditions for the corresponding sensitivities are all set to be zero.
Our choices for the input parameters are given in Table 4.

Parameter Input used
R0 (nm) 200

C0 (nm−1) various values in [0, 4
1000 ]

γ = ξ(2πR2
0) 30

α0 = a0
2πR2

0
30

Domain = [0, αmax] [0, 200]

Table 4: Parameters used in the model. The corresponding diagrams are depicted in Figure 9.

This particular choice of parameters is in agreement with [25].
We organize our results as follows: graphs of energy sensitivities with respect to parameters C0,

λ, and t0 are displayed on the left column of Figure 5B, C, and D, respectively; the graphs of the
dimensionless curvature sensitivities with respect to parameters involved are depicted on the right
column of these panels. We make two observations. First, notice that for our choice of the type of
boundary conditions (B.C. of type II, Equation (62)) and spontaneous curvature function, the energy
sensitivity graph with respect to C0 indeed intersects the horizontal axis. Second, notice that for our
choice of boundary conditions and spontaneous curvature function (which possesses a sharp transi-
tion), the graphs of curvature sensitivities have sharp bends particularly near the location where the
sharp transition in spontaneous curvature function occurs. The graphs of curvature sensitivities will
be smoother near α0 if we smooth the sharp transition in the spontaneous curvature function.
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Figure 9: (A) Shape of the spontaneous curvature function with γ = 30 and α0 = 30.
(B) The red curve on the left depicts ∂W

∂C0
|(C0,γ,α0)=(C0,30,30) for 0 ≤ C0 ≤ 0.004. The

blue curve on the right depicts ∂h
∂C0
|(C0,γ,α0)=(0.004,30,30) for 0 ≤ α ≤ 200. (C) The red

curve on the left depicts ∂W
∂γ |(C0,γ,α0)=(C0,30,30) for 0 ≤ C0 ≤ 0.004. The blue curve on

the right depicts ∂h
∂γ |(C0,γ,α0)=(0.004,30,30) for 0 ≤ α ≤ 200. (D) The red curve on the left

depicts ∂W
∂t0
|(C0,γ,α0)=(C0,30,30) for 0 ≤ C0 ≤ 0.004. The blue curve on the right depicts

∂h
∂α0
|(C0,γ,α0)=(0.004,30,30) for 0 ≤ α ≤ 200. Note that W is a scalar multiple of the total elastic

bending energy of the membrane and h(α) is a scalar multiple of the mean curvature at the corre-
sponding points on the membrane.

A.4 Dimensionless area formulation – Mollifying type II spontaneous curvature

All parameters are exactly the same as §A.3 except γ. This time we choose γ to be equal to 0.08 such
that α0γ < 3. This choice of γ and α0 further smooths the transition in the spontaneous curvature
function (see Figure 10A). As a result we will see that the graphs of curvature sensitivities (diagrams
in the second column of Figure 10B, C, and D) are smoother near α0 = 30 (compared with what was
observed in §A.3).
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Figure 10: (A) Shape of the spontaneous curvature function with γ = 0.08 and α0 = 30.
(B) The red curve on the left depicts ∂W

∂C0
|(C0,γ,α0)=(C0,0.08,30) for 0 ≤ C0 ≤ 0.004. The

blue curve on the right depicts ∂h
∂C0
|(C0,γ,α0)=(0.004,0.08,30) for 0 ≤ α ≤ 200. (C) The red

curve on the left depicts ∂W
∂γ |(C0,γ,α0)=(C0,0.08,30) for 0 ≤ C0 ≤ 0.004. The blue curve on

the right depicts ∂h
∂γ |(C0,γ,α0)=(0.004,0.08,30) for 0 ≤ α ≤ 200. (D) The red curve on the left

depicts ∂W
∂t0
|(C0,γ,α0)=(C0,0.08,30) for 0 ≤ C0 ≤ 0.004. The blue curve on the right depicts

∂h
∂α0
|(C0,γ,α0)=(0.004,0.08,30) for 0 ≤ α ≤ 200. Note that W is a scalar multiple of the total elastic

bending energy of the membrane and h(α) is a scalar multiple of the mean curvature at the corre-
sponding points on the membrane.

B The derivatives

For the sake of completeness and also facilitating the verification of our results, here we list the
expressions for the various derivatives needed in our analysis.
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• Arc-length Formulation

D~xF =
[
∂F
∂x1

∂F
∂x2

· · · ∂F
∂x6

]

=



0 0 sinx3 0 0 0
0 0 − cosx3 0 0 0

− sinx3
x21

0 cosx3
x1

−2 0 0
x5
x21

0 0 0 −1
x1

0
∂f5
∂x1

0 4x1(x4 − c)(− cosx3
x1

)(x4 − sinx3
x1

) ∂f5
∂x4

0 −2x1x4
κ̃

0 0 0 −2κ̃ċ 0 0


, (81)

where
∂f5
∂x1

= −2x4
[
(x4 − c)2 +

x6
κ̃

)
]

+ 2(x4 − c)x24 + 2(x4 − c)(x4 −
sinx3
x1

)2 (82)

+ 4x1(x4 − c)(
sinx3
x21

)(x4 −
sinx3
x1

),

∂f5
∂x4

= −2x1(x4 − c)2 −
2x1x6
κ̃

+ 2x1x
2
4 + 2x1(x4 −

sinx3
x1

)2 (83)

+ 4x1(x4 − c)[x4 −
sinx3
x1

].

D~̇xF =
[
∂F
∂ẋ1

∂F
∂ẋ2

· · · ∂F
∂ẋ6

]
= Id (Id = identity matrix). (84)

∂F
∂pj

=



0
0
0

− ∂ċ
∂pj

4x1x4(x4 − c) ∂c
∂pj
− 2x1[x

2
4 + (x4 − sinx3

x1
)2] ∂c∂pj

−2κ̃x4
∂ċ
∂pj

+ 2κ̃[ ∂c∂pj ċ+ c ∂ċ∂pj ]


. (85)

w(~x(~p), ~p) = [x4(t)− c(t)]2x1(t) (86)

−→ Dw

Dpj
= 2[x4 − c](

∂x4
∂pj
− ∂c

∂pj
)x1 + (x4 − c)2

∂x1
∂pj

.

• Area Formulation:

D~xF =
[
∂F
∂x1

∂F
∂x2

· · · ∂F
∂x6

]

=



cosx3
x21

0 sinx3
x1

0 0 0
sinx3
x21

0 − cosx3
x1

0 0 0
2x4
x21
− 2 sinx3

x31
0 cosx3

x21

−2
x1

0 0
2x5
x31

0 0 0 −1
x21

0

4(x4 − c)( sinx3x21
)(x4 − sinx3

x1
) 0 4(x4 − c)(− cosx3

x1
)(x4 − sinx3

x1
) ∂f5

∂x4
0 −2x4

κ̃

0 0 0 −2κ̃ċ 0 0


,

(87)
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where

∂f5
∂x4

= −2(x4 − c)2 −
2x6
κ̃

+ 2x24 + 2(x4 −
sinx3
x1

)2 + 4(x4 − c)[x4 −
sinx3
x1

]. (88)

D~̇xF =
[
∂F
∂ẋ1

∂F
∂ẋ2

· · · ∂F
∂ẋ6

]
= Id. (89)

∂F
∂pj

=



0
0
0

− ∂ċ
∂pj

4x4(x4 − c) ∂c
∂pj
− 2[x24 + (x4 − sinx3

x1
)2] ∂c∂pj

−2κ̃x4
∂ċ
∂pj

+ 2κ̃[ ∂c∂pj ċ+ c ∂ċ∂pj ]


. (90)

w(~x(~p), ~p) = [x4(α)− c(α)]2 −→ Dw

Dpj
= 2[x4 − c](

∂x4
∂pj
− ∂c

∂pj
). (91)

• Type I Spontaneous Curvature

c(u) =
R0C0

2

[
1− tanh [γ(u− u0)]

]
. (92)

ċ(u) = −R0C0γ

2
sech2[γ(u− u0)]. (93)

∂c

∂p1
=

∂c

∂C0
=
R0

2

[
1− tanh[γ(u− u0)]

]
. (94)

∂c

∂p2
=
∂c

∂γ
=
−R0C0

2
(u− u0)sech2[γ(u− u0)]. (95)

∂c

∂p3
=

∂c

∂u0
=
R0C0γ

2
sech2[γ(u− u0)]. (96)

∂ċ

∂p1
=

∂ċ

∂C0
=
−R0γ

2
sech2[γ(u− u0)]. (97)

∂ċ

∂p2
=
∂ċ

∂γ
(98)

=
−R0C0

2
sech2[γ(u− u0)] +R0C0γ(u− u0)sech2[γ(u− u0)] tanh [γ(u− u0)].

∂ċ

∂p3
=

∂ċ

∂u0
= −R0c0γ

2sech2[γ(u− u0)] tanh [γ(u− u0)]. (99)

• Type II Spontaneous Curvature
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c(u) =
−R0C0

2u0
(u− u0)

[
1− tanh [γ(u− u0)]

]
. (100)

ċ(u) =
−R0C0

2u0
(u− u0)

[
1− tanh [γ(u− u0)]

]
+
R0C0γ

2u0
(u− u0)sech2[γ(u− u0)]. (101)

∂c

∂p1
=

∂c

∂C0
=
−R0

2u0
(u− u0)

[
1− tanh [γ(u− u0)]

]
. (102)

∂c

∂p2
=
∂c

∂γ
=
R0C0

2u0
(u− u0)2sech2[γ(u− u0)]. (103)

∂c

∂p3
=

∂c

∂u0
=
R0C0

2u20
(u− u0)

[
1− tanh [γ(u− u0)]

]
(104)

+
R0C0

2u0

[
1− tanh [γ(u− u0)]

]
− R0C0γ

2u0
(u− u0)sech2[γ(u− u0)].

∂ċ

∂p1
=

∂ċ

∂C0
=
−R0

2u0

[
1− tanh [γ(u− u0)]

]
+
R0γ

2u0
(u− u0)sech2[γ(u− u0)]. (105)

∂ċ

∂p2
=
∂ċ

∂γ
=
R0C0

u0
(u− u0)sech2[γ(u− u0)] (106)

− R0C0γ

u0
(u− u0)2sech2[γ(u− u0)] tanh [γ(u− u0)].

∂ċ

∂p3
=

∂ċ

∂u0
=
R0C0

2u20

[
1− tanh [γ(u− u0)]

]
− R0C0γ

u0
sech2[γ(u− u0)] (107)

− R0C0γ

2u20
(u− u0)sech2[γ(u− u0)]

+
R0C0γ

2

u0
(u− u0)sech2[γ(u− u0)] tanh [γ(u− u0)].
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