Math 171B: Numerical Optimization: Nonlinear Problems

Instructor: Michael Holst

Spring Quarter 2015

Solutions for Homework Assignment \#5

Exercise 5.1. Consider the nonlinearly constrained problem

$$
\begin{align*}
& \underset{x \in \mathcal{R}^{2}}{\operatorname{minimize}} 3 x_{2}+x_{1}^{2}+x_{2}^{2} \tag{5.1}\\
& \text { subject to } x_{1}^{2}+\left(x_{2}+1\right)^{2}-1=0
\end{align*}
$$

(a) Show that $x(\alpha)=(\sin \alpha, \cos \alpha-1)^{T}$ is a feasible path for the nonlinear constraint $x_{1}^{2}+\left(x_{2}+1\right)^{2}-1=0$ of problem (5.1). Compute the tangent to the feasible path at $\bar{x}=(0,0)^{T}$.
We need to check three conditions:
(1) $\underline{x(0)=x}:\left(\sin x_{1}, \cos x_{2}-1\right)^{T}=(0,0)^{T}$.
(2) $c(x(\alpha))=0: c(x(\alpha))=(\sin \alpha)^{2}+(\cos \alpha-1+1)^{2}-1=1-1=0$.
(3) $\overline{\left.\frac{d x \alpha}{d \alpha}\right|_{\alpha=0} \neq 0}:\left.(\cos \alpha,-\sin \alpha)\right|_{\alpha=0}=(1,0)^{T} \neq(0,0)^{T}$.

So $x(\alpha)$ is a feasible path. The tangent to this path at \bar{x} is

$$
\begin{aligned}
p & =\left.\frac{d}{d \alpha} x(\alpha)\right|_{\alpha=0} \\
& =\left.(\cos \alpha,-\sin \alpha)^{T}\right|_{\alpha=0} \\
& =(1,0)^{T}
\end{aligned}
$$

(b) If $f(x)$ denotes the objective function of problem (5.1), find an expression for $f(x(\alpha))$ and compute $f(x(0))$.
$f(x(\alpha))=3(\cos \alpha-1)+(\sin \alpha)^{2}+(\cos \alpha-1)^{2}=\cos \alpha-1$.
$f(x(0))=0$.
(c) Define the Lagrangian function $L(x, \lambda)$ and constraint Jacobian $J(x)$ for problem (5.1). Derive $\nabla L(x, \lambda)$, the gradient of the Lagrangian, and $\nabla_{x x}^{2} L(x, \lambda)$, the Hessian of the Lagrangian with respect to x.
The Jacobian is

$$
J(x)^{T}=\nabla c(x)=\binom{2 x_{1}}{2\left(x_{2}+1\right)} .
$$

The Lagrangian is

$$
L(x, \lambda)=f(x)-\lambda^{T} c(x)
$$

so

$$
\begin{gathered}
\nabla L(x, \lambda)=\left(\begin{array}{c}
2 x_{1}(1-\lambda) \\
2 x_{2}(1-\lambda)-2 \lambda+3 \\
-\left(x_{1}^{2}+\left(x_{2}+1\right)^{2}-1\right)
\end{array}\right) \\
\nabla_{x x}^{2} L(x, \lambda)=\left(\begin{array}{cc}
2-2 \lambda & 0 \\
0 & 2-2 \lambda
\end{array}\right)
\end{gathered}
$$

(d) Determine whether or not the point $\bar{x}=(0,0)^{T}$ is a constrained minimizer of problem (5.1).

We need to check three conditions:
(1) \bar{x} is feasible: $c\left((0,0)^{T}\right)=0$. So \bar{x} is feasible.
(2) There exists λ^{*} s.t. $g(\bar{x})-J(\bar{x})^{T} \lambda^{*}=0: g(\bar{x})-J(\bar{x})^{T} \lambda^{*}=\binom{0}{-2 \lambda^{*}+3}$. So for $\lambda^{*}=3 / 2$, there exists λ^{*} s.t. $g(\bar{x})-J(\bar{x})^{T} \lambda^{*}=0$.
(3) $\frac{p^{T} H\left(\bar{x}, \lambda^{*}\right) p \geq 0 \text { for every } p \text { satisfying } J(\bar{x}) p=0 \text { : Take } p=(1,0)^{T} \in \operatorname{null}(J(\bar{x})) \text {. Then } p^{T} H\left(\bar{x}, \lambda^{*}\right) p=}{p^{T} \nabla_{x x}^{2} L\left(\bar{x}, \lambda^{*}\right) p=-1<0 \text {. }}$

Since (3) fails, the second-order necessary conditions do not hold, so \bar{x} is not a minimizer.

Exercise 5.2. Consider the problem

$$
\begin{aligned}
& \underset{x \in \mathcal{R}^{2}}{\operatorname{minimize}} x_{1}^{2}+2 x_{2}^{2} \\
& \text { subject to } x_{1}+x_{2}-1=0
\end{aligned}
$$

(a) Find a point satisfying the KKT conditions. Verify that it is indeed an optimal point.

We need a x^{*} that is feasible and a λ^{*} such that $g\left(x^{*}\right)-J\left(x^{*}\right)^{T} \lambda^{*}=0$. Given $L(x, \lambda)=x_{1}^{2}+2 x_{2}^{2}-$ $\lambda\left(x_{1}+x_{2}-1\right)$:

$$
\nabla L=\left(\begin{array}{c}
2 x_{1}-\lambda \\
4 x_{2}-\lambda \\
-x_{1}-x_{2}+1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Solving this system gives $x^{*}=(2 / 3,1 / 3)^{T}, \lambda^{*}=4 / 3$.
This x^{*} and λ^{*} satisfies (1) and (2) (from part (d) in the above problem). We still need to check (3). Since $H\left(x^{*}, \lambda^{*}\right)$ is positive definite, $p^{T} H\left(x^{*}, \lambda^{*}\right) p \geq 0$ for every p satisfying $J\left(x^{*}\right) p=0$. So this point is optimal.
(b) Repeat Part (a) with the objective replaced by $x_{1}^{3}+x_{2}^{3}$.

$$
\nabla L=\left(\begin{array}{c}
3 x_{1}^{2}-\lambda \\
3 x_{2}^{2}-\lambda \\
-x_{1}-x_{2}+1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Solving this system gives $x^{*}=(1 / 2,1 / 2)^{T}, \lambda^{*}=3 / 4$. Since $H\left(x^{*}, \lambda^{*}\right)$ is positive definite, this point is optimal.

Exercise 5.3.* Write a Matlab function that will compute $c(x)$ and $J(x)$ for the constraint function

$$
c(x)=x_{1}+x_{2}-x_{1} x_{2}-\frac{3}{2}
$$

Use your function to find $c(x)$ and $J(x)$ at $x=(.1-.5)^{T}, x=(.5,-1)^{T}$ and $x=(1.18249728,-1.73976692)^{T}$. At each of these points, discuss the optimality of the constrained minimization problem:

$$
\begin{aligned}
& \underset{x \in \mathcal{R}^{2}}{\operatorname{minimize}} e^{x_{1}}\left(4 x_{1}^{2}+2 x_{2}^{2}+4 x_{1} x_{2}+2 x_{2}+1\right) \\
& \text { subject to } x_{1}+x_{2}-x_{1} x_{2}-\frac{3}{2}=0
\end{aligned}
$$

The first part of the exercise is similar to the previous Matlab exercises. The discussion on optimality is similar to the exercise above.

Exercise 5.4.* The m-file newbat.m, implementing a NEWton with Backtracking for the problem $F(x)=0$, can be found on the class webpage.
(a) Starting at $x_{0}=\left(2, \frac{1}{2}\right)^{T}, \lambda_{0}=0$, use the implementation to solve the problem in Exercise 5.3.
(b) Repeat part (a), but change the constraint to $4 x_{1}-x_{2}-6=0$.
(c) Repeat part (b) but start at $x_{0}=(1,-2)^{T}$.

We want newbat.m to solve the system $F(x, \lambda)=0$, where

$$
F(x, \lambda)=\binom{g(x)-J(x)^{T} \lambda}{c(x)}
$$

i.e. you need to provide this F as well as its Jacobian - newbat.m will do the rest. See TA if you have further questions.

