Math 171B: Numerical Optimization: Nonlinear Problems

Instructor: Michael Holst

Spring Quarter 2015

Solutions for Homework Assignment \#4

Exercise 4.1. Let $f(x)$ denote a convex continuously differentiable function. Show that if a stationary point x^{*} exists, then $f\left(x^{*}\right)$ is a global minimum of f. Also show that if $f(x)$ is actually strictly convex, then $x *$ is the unique global minimum. Why can uniqueness be lost if the function is not strictly convex? Draw a picture of such a situation when $f: \mathbb{R} \mapsto \mathbb{R}$.

If x^{*} is a stationary point, then, letting $x=x^{*}, f(y) \geq f\left(x^{*}\right)+f^{\prime}\left(x^{*}\right)\left(y-x^{*}\right)=f\left(x^{*}\right)$ for all y, so $f\left(x^{*}\right)$ is a global minimum of f.

If $f(x)$ is strictly convex, $f(y)>f\left(x^{*}\right)+f^{\prime}\left(x^{*}\right)\left(y-x^{*}\right)=f\left(x^{*}\right)$ for all y. Assume for contradiction that there exists another global minimizer $\hat{x} \neq x^{*}$. But then $f(\hat{x})>f\left(x^{*}\right)$, so \hat{x} cannot be a global minimizer. So x^{*} is the unique global minimizer.

Exercise 4.2. This problem requires modifying the Hessian to produce a descent direction. Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x)=x_{1}^{2}+x_{2}^{2} \cos x_{3}-e^{x_{2}} x_{3}^{2}+4 x_{3}
$$

(a) Derive the gradient $g(x)$ and Hessian $H(x)$ of $f(x)$.

$$
g(x)=\left(\begin{array}{c}
2 x_{1} \\
2 x_{2} \cos x_{3}-e^{x_{2}} x_{3}^{2} \\
-x_{2}^{2} \sin x_{3}-2 e^{x_{2}} x_{3}+4
\end{array}\right), \quad H(x)=\left(\begin{array}{rrr}
2 & 0 & 0 \\
0 & 2 \cos x_{3}-e^{x_{2}} x_{3}^{2} & -2 x_{2} \sin x_{3}-2 e^{x_{2}} x_{3} \\
0 & -2 x_{2} \sin x_{3}-2 e^{x_{2}} x_{3} & -x_{2} \cos x_{3}-2 e^{x_{2}}
\end{array}\right)
$$

(b) Compute the spectral decomposition of $H(x)$ at $\bar{x}=(0,1,0)^{T}$.

Since $H(\bar{x})=\left(\begin{array}{rrr}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -(1+2 e)\end{array}\right)$ is a diagonal matrix, simply let $V=I$. Then $H(\bar{x})=I\left(\begin{array}{llr}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -(1+2 e)\end{array}\right) I^{T}$.
(c) Compute the "pure" Newton direction p^{N} at \bar{x}. Is p^{N} a descent direction?

Solving $H(\bar{x}) p^{N}=-g(\bar{x})=-\left(\begin{array}{l}0 \\ 2 \\ 4\end{array}\right)$ gives $p^{N}=\left(\begin{array}{c}0 \\ -1 \\ \frac{4}{1+26}\end{array}\right)$. Since $g^{T} p^{N}=-2+\frac{16}{1+2 e} \approx 0.4858>0$, p^{N} is not a descent direction.
(d) Compute the modified Newton direction p^{M} at the same point using the eigenvalue reflection technique (the better of the two approaches we discussed in class). Find the directional derivative along p^{M} at \bar{x}.

$$
B(\bar{x})=\left(\begin{array}{rrr}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1+2 e
\end{array}\right) . \text { Solving } B(\bar{x}) p^{M}=-g(\bar{x})=-\left(\begin{array}{l}
0 \\
2 \\
4
\end{array}\right) \text { gives } p^{M}=\left(\begin{array}{c}
0 \\
-1 \\
-\frac{4}{1+26}
\end{array}\right)
$$

The directional derivative is $g^{T} \frac{p^{M}}{\left\|p^{M}\right\|_{2}}=\frac{-2-16 / 1+2 e}{\sqrt{1+16 /(1+2 e)^{2}}} \approx-3.810$.
(e) Find a direction of negative curvature at \bar{x}. Verify your result numerically.

We want a p such that $p^{T} H(\bar{x}) p<0$. One possible direction is $p=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$.

Exercise 4.3.* Write a Matlab function newton.m that implements a modified Newton with a backtracking line search. (This is fairly simple modification of the routine steepest.m that you wrote for the previous homework.)
Now, do the following with the implementation:
(a) Starting at $x_{0}=(0,-1)^{T}$, apply the modified Newton method to Rosenbrock's function

$$
f(x)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}
$$

which has a unique minimizer at $x^{*}=(1,1)^{T}$.
(b) Minimize the function

$$
f(x)=\left(x_{1}+10 x_{2}\right)^{2}+5\left(x_{3}-x_{4}\right)^{2}+\left(x_{2}-2 x_{3}\right)^{4}+10\left(x_{1}-x_{4}\right)^{4}
$$

starting at $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)^{T}$. The minimizer lies at $x^{*}=(0,0,0,0)^{T}$. Discuss the differences between this run and that of part (a).

In each case, verify that the point you find is a local minimizer.
See the TA for the solution.

