MATH 171B: Numerical Optimization: Nonlinear Problems

Instructor: Michael Holst

Spring Quarter 2015

Solutions for Homework Assignment #1

Exercise 1.1. If x is an eigenvector of A, show that βx is also an eigenvector for any $\beta \neq 0$. What is the associated eigenvalue? Use this result to show that the unit vector x/||x|| formed from an eigenvector x is also an eigenvector of A corresponding to the same eigenvalue as that of x.

If $Ax = \lambda x$, then clearly $A(\beta x) = \beta(Ax) = \beta(\lambda x) = \lambda(\beta x)$ holds, simply by the properties of scalar-vector and scalar-matrix multiplication, and by the definition of an eigenpair. Therefore, if x is an eigenvector then so is βx , and both have the same eigenvalue. Moreover, if x is an eigenvector, we know that $x \neq 0$, so that $\|x\| \neq 0$ (property of the norm), so that taking $\beta = 1/\|x\|$ is well-defined. Therefore, if x is an eigenvector, so is $x/\|x\|$, for the same eigevalue.

Exercise 1.2. Let $(x, y) : V \mapsto \mathbb{R}$ be an inner-product on a vector space V with associated scalar field \mathbb{R} . We know that (x, y) must satisfy the three properties of an inner-product:

$$\begin{split} &1. \ (x,x) \geq 0, \quad \forall x \in V, \quad (x,x) = 0 \text{iff} x = 0. \\ &2. \ (x,y) = (y,x), \quad \forall x,y \in V. \\ &3. \ (\alpha x + \beta y,z) = \alpha(x,z) + \beta(y,z), \quad \forall \alpha,\beta \in \mathbb{R}, \quad \forall x,y,z \in V. \end{split}$$

Use these three properties to show that the induced norm $||x|| = (x, x)^{1/2}$ satisfies the three properties of a norm:

1. $\|\alpha x\| = |\alpha| \|x\|, \quad \forall \alpha \in \mathbb{R}, \quad \forall x \in V.$ 2. $\|x\| \ge 0, \quad \forall x \in V, \quad \|x\| = 0$ iff x = 0. 3. $\|x + y\| \le \|x\| + \|y\|, \quad \forall x, y \in V.$

Hint: Showing the first two properties is very easy; to show the last property (triangle inequality), assume the Cauchy-Schwarz inequality holds: $|(x, y)| \le ||x|| ||y||$.

Property 1 By properties 2 and 3 of the inner-product we have $\|\alpha x\| = (\alpha x, \alpha x)^{1/2} = \{\alpha^2(x, x)\}^{1/2} = |\alpha| \|x\|.$

Property 2 By property 1 of the inner-product $||x|| = (x, x)^{1/2} \ge 0 \quad \forall x \in V$, and $||x|| = (x, x)^{1/2} = 0$ iff x = 0.

Property 3 By properties 2 and 3 of the inner-product, and by the Cauchy-Schwarz inequality, it holds that:

$$\begin{aligned} \|x+y\|^2 &= (x+y,x+y) \\ &= (x,x) + 2(x,y) + (y,y) \\ &\leq (x,x) + 2|(x,y)| + (y,y) \\ &\leq (x,x) + 2 \|x\| \|y\| + (y,y) \\ &= \|x\|^2 + 2 \|x\| \|y\| + \|y\|^2 \\ &= (\|x\| + \|y\|)^2, \end{aligned}$$

which gives $||x + y|| \le ||x|| + ||y||$.

Exercise 1.3. Let F(x) denote a twice-differentiable function of one variable. Assuming only the meanvalue theorem of integral calculus: $F(b) = F(a) + \int_a^b F'(t) dt$, derive the following variants of the Taylor-series expansion with integral remainder:

(a) $F(x+h) = F(x) + \int_x^{x+h} F'(t) dt.$

This follows from the mean-value theorem on substituting a = x and b = x + h.

(b) $F(x+h) = F(x) + h \int_0^1 F'(x+\xi h) d\xi.$

The idea is to transform the variable of integration in part (a). Consider the new variable ξ such that $t = x + h\xi$. As t varies between the limits of integration x and x + h, we find that ξ varies between 0 and 1. Substituting for t in part (a) and using $dt = h d\xi$ gives the result.

(c) $F(x+h) = F(x) + hF'(x) + h \int_0^1 [F'(x+\xi h) - F'(x)] d\xi.$

From part (b) we have

$$F(x+h) = F(x) + h \int_0^1 F'(x+\xi h) d\xi$$

= $F(x) + hF'(x) - hF'(x) + h \int_0^1 F'(x+\xi h) d\xi$

Since hF'(x) is independent of ξ , the variable of integration, we may take it under the integral sign to give

$$F(x+h) = F(x) + hF'(x) + h \int_0^1 [F'(x+\xi h) - F'(x)] d\xi$$

as required.

(d) $F(x+h) = F(x) + hF'(x) + h^2 \int_0^1 F''(x+\xi h)(1-\xi) d\xi$. (Hint: Try expanding F'(x+h) using a formula analogous to part (b) and differentiate with respect to h using the chain rule.)

Since F'(x) is differentiable, we can apply the formula of part (b) to the function F', giving

$$F'(x+h) = F'(x) + h \int_0^1 F''(x+\xi h) \,d\xi.$$
(1.1)

Another expression for F'(x+h) can be found by considering the result of part (b):

$$F(x+h) = F(x) + h \int_0^1 F'(x+\xi h) d\xi.$$
 (1.2)

For fixed x we can differentiate F(x+h) with respect to h. Applying the chain-rule for differentiation gives

$$\frac{dF(x+h)}{dh} = F'(x+h) = \int_0^1 F'(x+\xi h) \, d\xi + h \int_0^1 F''(x+\xi h)\xi \, d\xi.$$
(1.3)

Combining (1.1), (1.2) and (1.3), so that the terms F'(x+h) and $\int_0^1 F'(x+\xi h) d\xi$ are eliminated, we obtain the required identity. In particular, taking $2 \times (1.2) - h \times (1.3) + h \times (1.1)$ gives the result.

Exercise 1.4. Find the gradient vector $F(x) = \nabla f(x)$ of the following functions, and then find the Jacobian matrix of F(x). (The Jacobian matrix of $F(x) = \nabla f(x)$ is the same as the Hessian matrix $\nabla^2 f(x)$ of f(x)).

(a) $f(x) = 2(x_2 - x_1^2)^2 + (x_1 - 3)^2$.

First we form the row vector f'(x) by forming the first partials with respect to each variable. This gives

$$f'(x) = \begin{pmatrix} -8x_1(x_2 - x_1^2) + 2(x_1 - 3) & 4(x_2 - x_1^2) \end{pmatrix}.$$

The gradient of f is just the transpose of this vector, giving

$$g(x) = (f'(x))^T = \begin{pmatrix} -8x_1(x_2 - x_1^2) + 2(x_1 - 3) \\ 4(x_2 - x_1^2) \end{pmatrix}.$$

The Hessian matrix is defined as the derivative of the gradient g, so that

$$H(x) = \begin{pmatrix} -8(x_2 - x_1^2) + 16x_1^2 + 2 & -8x_1 \\ -8x_1 & 4 \end{pmatrix}.$$

Since the Hessian is always a *symmetric matrix* (if the second partials are continuous), you can use this as a check on your work: if you work out the off-diagonal partial derivatives separately, they should come out to be the same value.

(b) $f(x) = (2x_1 + x_2)^2 + 4(x_2 - x_3)^4$.

Forming the gradient vector as in part (a), we get

$$g(x) = \begin{pmatrix} 8x_1 + 4x_2 \\ 4x_1 + 2x_2 + 16(x_2 - x_3)^3 \\ -16(x_2 - x_3)^3 \end{pmatrix}.$$

The Hessian matrix is just the "Jacobian" of this column vector. Plugging away at it gives the Hessian matrix H(x) as

$$\begin{pmatrix} 8 & 4 & 0\\ 4 & 2+48(x_2-x_3)^2 & -48(x_2-x_3)^2\\ 0 & -48(x_2-x_3)^2 & 48(x_2-x_3)^2 \end{pmatrix}.$$

Exercise 1.5. Find f'(x), $\nabla f(x)$ and $\nabla^2 f(x)$ for the following functions of n variables.

(a) $f(x) = \frac{1}{2}x^T H x$, where H is an $n \times n$ constant matrix.

The trick is to and work out the derivatives without getting too buried in lots of indices. First, we write H in terms of its columns $\{h_j\}$,

/ · · · ·

$$H = \begin{pmatrix} h_1 & h_2 & \cdots & h_n \end{pmatrix}, \text{ where } h_j = \begin{pmatrix} h_{1j} \\ h_{2j} \\ \vdots \\ h_{nj} \end{pmatrix}.$$

This partition of H allows us to write f(x) as

$$f(x) = \frac{1}{2}x^{T}Hx = \frac{1}{2}x^{T}\left(\sum_{j=1}^{n} h_{j}x_{j}\right) = \frac{1}{2}\sum_{j=1}^{n} (x^{T}h_{j})x_{j}$$

Taking the partial derivative with respect to x_i , and using standard rules about differentiating products, we obtain

$$\frac{\partial f(x)}{\partial x_i} = \frac{1}{2} \sum_{j=1}^n \frac{\partial (x^T h_j)}{\partial x_i} x_j + \frac{1}{2} \sum_{j=1}^n (x^T h_j) \frac{\partial x_j}{\partial x_i} = \frac{1}{2} \sum_{j=1}^n \frac{\partial (x^T h_j)}{\partial x_i} x_j + \frac{1}{2} x^T h_i.$$

The first term under the summation can be written as

$$\frac{\partial (x^T h_j)}{\partial x_i} = \frac{\partial}{\partial x_i} \sum_{k=1}^n x_k h_{kj} = h_{ij}.$$

Since $x^T h_i = \sum_{j=1}^n h_{ji} x_j$, it follows that

$$\frac{\partial f(x)}{\partial x_i} = \frac{1}{2} \sum_{j=1}^n h_{ij} x_j + \frac{1}{2} \sum_{j=1}^n h_{ji} x_j,$$

and $\partial f(x)/\partial x_i$ is half the sum of the *i*th elements of Hx and H^Tx , with

$$f'(x) = \frac{1}{2}x^{T}(H + H^{T}).$$

The gradient $\nabla f(x)$ is the transpose of f'(x), giving

$$\nabla f(x) = \frac{1}{2}(H^T + H)x$$

The Hessian matrix $\nabla^2 f(x)$ is defined as the first derivative (i.e., Jacobian) of the gradient vector. Hence

$$\nabla^2 f(x) = (\nabla f(x))' = \frac{1}{2}((H^T x)' + (Hx)')$$

Given any constant matrix A, the Jacobian of Ax is A, which implies that

$$\nabla^2 f(x) = \frac{1}{2} (H^T + H)$$

Notice that the Hessian is a symmetric matrix, even though H is not symmetric.

(b) $f(x) = b^T A x - \frac{1}{2} x^T A^T A x$, where A is an $m \times n$ constant matrix and b is a constant m-vector. If we use $H = A^T A$ in part (a) we have

$$f'(x) = b^{T}A - \frac{1}{2}x^{T}(A^{T}A + (A^{T}A)^{T}) = b^{T}A - x^{T}A^{T}A.$$

the last equality following from the fact that $A^{T}A$ is symmetric. Forming the transpose for g(x) gives

$$\nabla f(x) = f'(x)^T = A^T b - A^T A x = A^T (b - A x)$$

Finally, we have from part (a)

$$\nabla^2 f(x) = (\nabla f(x))' = \frac{1}{2}(A^T A + (A^T A)^T) = A^T A$$

(c) $f(x) = ||x|| = \left(\sum_{i=1}^{n} x_i^2\right)^{1/2}$.

First we compute $\partial f / \partial x_j$:

$$\frac{\partial f(x)}{\partial x_j} = \frac{1}{2} \left(\sum_{i=1}^n x_i^2 \right)^{-1/2} 2x_j = \frac{1}{\|x\|} x_j.$$

This implies that

$$f'(x) = \left(\begin{array}{ccc} \frac{1}{\|x\|} x_1 & \frac{1}{\|x\|} x_2 & \cdots & \frac{1}{\|x\|} x_n \end{array}\right) = \frac{1}{\|x\|} x^T,$$

and $\nabla f(x) = x/||x||$.

Differentiating with respect to x_i for $i \neq j$, we obtain

$$\frac{\partial^2 f(x)}{\partial x_i \partial x_j} = \frac{\partial}{\partial x_i} \left(\frac{\partial f(x)}{\partial x_j} \right) = \frac{\partial}{\partial x_i} \left(\frac{x_j}{\|x\|} \right) = -\frac{x_i x_j}{\|x\|^3}.$$

Similarly, for i = j, we have

$$\frac{\partial^2 f(x)}{\partial x_j^2} = \frac{\partial}{\partial x_j} \left(\frac{\partial f(x)}{\partial x_j} \right) = \frac{\partial}{\partial x_j} \left(\frac{x_j}{\|x\|} \right) = \frac{\|x\|^2 - x_j^2}{\|x\|^3}.$$

Therefore, the Hessian of f(x) may be written:

$$\nabla^2 f(x) = \frac{1}{\|x\|^3} \begin{pmatrix} \|x\|^2 - x_1^2 & -x_1 x_2 & \cdots & -x_1 x_n \\ -x_2 x_1 & \ddots & \vdots \\ \vdots & & \\ -x_n x_1 & \cdots & \|x\|^2 - x_n^2 \end{pmatrix}$$
$$= \frac{1}{\|x\|^3} (\|x\|^2 I - x x^T) = \frac{1}{\|x\|} (I - \hat{x} \hat{x}^T),$$

where \hat{x} is the unit vector x/||x||.

Exercise 1.6.* Create a MATLAB m-file of the form:

function [F,J] = D(x)
F = [a ; b];
J = [c d ; e f];

where the expressions for a, b, c, d, e, f are chosen so that the function returns the 2×1-vector-valued function F(x) and the 2×2 Jacobian matrix J(x) for the function F(x) from part (a) of Problem 1.4. Use this m-file to compute F and J at $x = (1, 0)^T$; and $x = (1, 1)^T$. Capture the output from the computation and turn it in with the homework.

See the TA for the solution to this problem.