
Math 171B: Numerical Optimization: Nonlinear Problems

Instructor: Michael Holst

Spring Quarter 2015

Solutions for Homework Assignment #1

Exercise 1.1. If x is an eigenvector of A, show that βx is also an eigenvector for any β 6= 0. What is the
associated eigenvalue? Use this result to show that the unit vector x/‖x‖ formed from an eigenvector x is
also an eigenvector of A corresponding to the same eigenvalue as that of x.

If Ax = λx, then clearly A(βx) = β(Ax) = β(λx) = λ(βx) holds, simply by the properties of scalar-vector
and scalar-matrix multiplication, and by the definition of an eigenpair. Therefore, if x is an eigenvector then
so is βx, and both have the same eigenvalue. Moreover, if x is an eigenvector, we know that x 6= 0, so that
‖x‖ 6= 0 (property of the norm), so that taking β = 1/‖x‖ is well-defined. Therefore, if x is an eigenvector,
so is x/‖x‖, for the same eigevalue.

Exercise 1.2. Let (x, y) : V 7→ R be an inner-product on a vector space V with associated scalar field R.
We know that (x, y) must satisfy the three properties of an inner-product:

1. (x, x) ≥ 0, ∀x ∈ V, (x, x) = 0iffx = 0.

2. (x, y) = (y, x), ∀x, y ∈ V .

3. (αx+ βy, z) = α(x, z) + β(y, z), ∀α, β ∈ R, ∀x, y, z ∈ V .

Use these three properties to show that the induced norm ‖x‖ = (x, x)1/2 satisfies the three properties of a
norm:

1. ‖αx‖ = |α| ‖x‖, ∀α ∈ R, ∀x ∈ V .

2. ‖x‖ ≥ 0, ∀x ∈ V, ‖x‖ = 0iffx = 0.

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖, ∀x, y ∈ V .

Hint: Showing the first two properties is very easy; to show the last property (triangle inequality), assume
the Cauchy-Schwarz inequality holds: |(x, y)| ≤ ‖x‖ ‖y‖.

Property 1 By properties 2 and 3 of the inner-product we have ‖αx‖ = (αx, αx)1/2 =
{
α2(x, x)

}1/2
=

|α| ‖x‖.

Property 2 By property 1 of the inner-product ‖x‖ = (x, x)1/2 ≥ 0 ∀x ∈ V , and ‖x‖ = (x, x)1/2 = 0iffx = 0.

Property 3 By properties 2 and 3 of the inner-product, and by the Cauchy-Schwarz inequality, it holds that:

‖x+ y‖2 = (x+ y, x+ y)

= (x, x) + 2(x, y) + (y, y)

≤ (x, x) + 2|(x, y)|+ (y, y)

≤ (x, x) + 2 ‖x‖ ‖y‖+ (y, y)

= ‖x‖2 + 2 ‖x‖ ‖y‖+ ‖y‖2

= (‖x‖+ ‖y‖)2,

which gives ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Exercise 1.3. Let F (x) denote a twice-differentiable function of one variable. Assuming only the mean-

value theorem of integral calculus: F (b) = F (a)+
∫ b

a
F ′(t) dt, derive the following variants of the Taylor-series

expansion with integral remainder:

(a) F (x+ h) = F (x) +
∫ x+h

x
F ′(t) dt.

This follows from the mean-value theorem on substituting a = x and b = x+ h.



(b) F (x+ h) = F (x) + h
∫ 1

0
F ′(x+ ξh) dξ.

The idea is to transform the variable of integration in part (a). Consider the new variable ξ such that
t = x + hξ. As t varies between the limits of integration x and x + h, we find that ξ varies between 0
and 1. Substituting for t in part (a) and using dt = h dξ gives the result.

(c) F (x+ h) = F (x) + hF ′(x) + h
∫ 1

0
[F ′(x+ ξh)− F ′(x)] dξ.

From part (b) we have

F (x+ h) = F (x) + h

∫ 1

0

F ′(x+ ξh) dξ

= F (x) + hF ′(x)− hF ′(x) + h

∫ 1

0

F ′(x+ ξh) dξ.

Since hF ′(x) is independent of ξ, the variable of integration, we may take it under the integral sign to
give

F (x+ h) = F (x) + hF ′(x) + h

∫ 1

0

[F ′(x+ ξh)− F ′(x)] dξ

as required.

(d) F (x+h) = F (x)+hF ′(x)+h2
∫ 1

0
F ′′(x+ξh)(1−ξ) dξ. (Hint: Try expanding F ′(x+h) using a formula

analogous to part (b) and differentiate with respect to h using the chain rule.)

Since F ′(x) is differentiable, we can apply the formula of part (b) to the function F ′, giving

F ′(x+ h) = F ′(x) + h

∫ 1

0

F ′′(x+ ξh) dξ. (1.1)

Another expression for F ′(x+ h) can be found by considering the result of part (b):

F (x+ h) = F (x) + h

∫ 1

0

F ′(x+ ξh) dξ. (1.2)

For fixed x we can differentiate F (x+ h) with respect to h. Applying the chain-rule for differentiation
gives

dF (x+ h)

dh
= F ′(x+ h) =

∫ 1

0

F ′(x+ ξh) dξ + h

∫ 1

0

F ′′(x+ ξh)ξ dξ. (1.3)

Combining (1.1), (1.2) and (1.3), so that the terms F ′(x+ h) and
∫ 1

0
F ′(x+ ξh) dξ are eliminated, we

obtain the required identity. In particular, taking 2× (1.2)− h× (1.3) + h× (1.1) gives the result.

Exercise 1.4. Find the gradient vector F (x) = ∇f(x) of the following functions, and then find the Jacobian
matrix of F (x). (The Jacobian matrix of F (x) = ∇f(x) is the same as the Hessian matrix ∇2f(x) of f(x)).

(a) f(x) = 2
(
x2 − x21

)2
+
(
x1 − 3

)2
.

First we form the row vector f ′(x) by forming the first partials with respect to each variable. This gives

f ′(x) =
(
−8x1(x2 − x21) + 2(x1 − 3) 4(x2 − x21)

)
.

The gradient of f is just the transpose of this vector, giving

g(x) = (f ′(x))T =

(
−8x1(x2 − x21) + 2(x1 − 3)

4(x2 − x21)

)
.

The Hessian matrix is defined as the derivative of the gradient g, so that

H(x) =

(
−8(x2 − x21) + 16x21 + 2 −8x1

−8x1 4

)
.

Since the Hessian is always a symmetric matrix (if the second partials are continuous), you can use this
as a check on your work: if you work out the off-diagonal partial derivatives separately, they should
come out to be the same value.
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(b) f(x) = (2x1 + x2)2 + 4(x2 − x3)4.

Forming the gradient vector as in part (a), we get

g(x) =

 8x1 + 4x2
4x1 + 2x2 + 16(x2 − x3)3

−16(x2 − x3)3

 .

The Hessian matrix is just the “Jacobian” of this column vector. Plugging away at it gives the Hessian
matrix H(x) as  8 4 0

4 2 + 48(x2 − x3)2 −48(x2 − x3)2

0 −48(x2 − x3)2 48(x2 − x3)2

 .

Exercise 1.5. Find f ′(x), ∇f(x) and ∇2f(x) for the following functions of n variables.

(a) f(x) = 1
2x

THx, where H is an n× n constant matrix.

The trick is to and work out the derivatives without getting too buried in lots of indices. First, we
write H in terms of its columns {hj},

H =
(
h1 h2 · · · hn

)
,wherehj =


h1j
h2j

...
hnj

 .

This partition of H allows us to write f(x) as

f(x) = 1
2x

THx = 1
2x

T

( n∑
j=1

hjxj

)
= 1

2

n∑
j=1

(xThj)xj .

Taking the partial derivative with respect to xi, and using standard rules about differentiating products,
we obtain

∂f(x)

∂xi
= 1

2

n∑
j=1

∂(xThj)

∂xi
xj + 1

2

n∑
j=1

(xThj)
∂xj
∂xi

= 1
2

n∑
j=1

∂(xThj)

∂xi
xj + 1

2x
Thi.

The first term under the summation can be written as

∂(xThj)

∂xi
=

∂

∂xi

n∑
k=1

xkhkj = hij .

Since xThi =
∑n

j=1 hjixj , it follows that

∂f(x)

∂xi
= 1

2

n∑
j=1

hijxj + 1
2

n∑
j=1

hjixj ,

and ∂f(x)/∂xi is half the sum of the ith elements of Hx and HTx, with

f ′(x) = 1
2x

T (H +HT ).

The gradient ∇f(x) is the transpose of f ′(x), giving

∇f(x) = 1
2 (HT +H)x.

The Hessian matrix ∇2f(x) is defined as the first derivative (i.e., Jacobian) of the gradient vector.
Hence

∇2f(x) = (∇f(x))′ = 1
2 ((HTx)′ + (Hx)′).

Given any constant matrix A, the Jacobian of Ax is A, which implies that

∇2f(x) = 1
2 (HT +H).

Notice that the Hessian is a symmetric matrix, even though H is not symmetric.
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(b) f(x) = bTAx− 1
2x

TATAx, where A is an m× n constant matrix and b is a constant m-vector.

If we use H = ATA in part (a) we have

f ′(x) = bTA− 1
2x

T(ATA+ (ATA)T ) = bTA− xTATA.

the last equality following from the fact that ATA is symmetric. Forming the transpose for g(x) gives

∇f(x) = f ′(x)T = AT b−ATAx = AT (b−Ax).

Finally, we have from part (a)

∇2f(x) = (∇f(x))′ = 1
2 (ATA+ (ATA)T ) = ATA.

(c) f(x) = ‖x‖ =
(∑n

i=1 x
2
i

)1/2
.

First we compute ∂f/∂xj :

∂f(x)

∂xj
= 1

2

( n∑
i=1

x2i

)−1/2
2xj =

1

‖x‖
xj .

This implies that

f ′(x) =

(
1

‖x‖
x1

1

‖x‖
x2 · · · 1

‖x‖
xn

)
=

1

‖x‖
xT ,

and ∇f(x) = x/‖x‖.
Differentiating with respect to xi for i 6= j, we obtain

∂2f(x)

∂xi∂xj
=

∂

∂xi

(
∂f(x)

∂xj

)
=

∂

∂xi

(
xj
‖x‖

)
= − xixj
‖x‖3

.

Similarly, for i = j, we have

∂2f(x)

∂x2j
=

∂

∂xj

(
∂f(x)

∂xj

)
=

∂

∂xj

(
xj
‖x‖

)
=
‖x‖2 − x2j
‖x‖3

.

Therefore, the Hessian of f(x) may be written:

∇2f(x) =
1

‖x‖3


‖x‖2 − x21 −x1x2 · · · −x1xn

−x2x1
. . .

...
...

−xnx1 · · · ‖x‖2 − x2n


=

1

‖x‖3
(‖x‖2I − xxT ) =

1

‖x‖
(
I − x̂x̂T

)
,

where x̂ is the unit vector x/‖x‖.

Exercise 1.6.∗ Create a Matlab m-file of the form:

function [F,J] = D(x)
F = [ a ; b ];
J = [ c d ; e f ];

where the expressions for a, b, c, d, e, f are chosen so that the function returns the 2×1-vector-valued function
F (x) and the 2× 2 Jacobian matrix J(x) for the function F (x) from part (a) of Problem 1.4. Use this m-file
to compute F and J at x = (1, 0)T ; and x = (1, 1)T . Capture the output from the computation and turn
it in with the homework.

See the TA for the solution to this problem.
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