MATH 171B: Numerical Optimization: Nonlinear Problems

Instructor: Michael Holst

Spring Quarter 2015

Solutions for Homework Assignment #1

Exercise 1.1. If z is an eigenvector of A, show that Sx is also an eigenvector for any 5 # 0. What is the
associated eigenvalue? Use this result to show that the unit vector x/||z|| formed from an eigenvector x is
also an eigenvector of A corresponding to the same eigenvalue as that of x.

If Ax = Az, then clearly A(Bz) = B(Ax) = B(Ax) = A(Bz) holds, simply by the properties of scalar-vector
and scalar-matrix multiplication, and by the definition of an eigenpair. Therefore, if = is an eigenvector then
80 is Bz, and both have the same eigenvalue. Moreover, if x is an eigenvector, we know that x # 0, so that
||z|| # 0 (property of the norm), so that taking 5 = 1/||z|| is well-defined. Therefore, if  is an eigenvector,
so is z/||x||, for the same eigevalue.

Exercise 1.2. Let (x,y) : V +— R be an inner-product on a vector space V with associated scalar field R.
We know that (x,y) must satisfy the three properties of an inner-product:

1. (z,2) >0, VYxeV, (z,z)=0iffr=0.
2. (z,y) = (y,x), Vo,yeV.
3. (aw+ By,z) = oz, 2) + By, 2), Va,BER, Va,y,z€eV.

Use these three properties to show that the induced norm ||z|| = (x,x)'/? satisfies the three properties of a
norm:

L |laz| = |af [|z]|, YaeR, VzeV.
2. ||lz|| >0, VeV, |z|=0ifr=0.
3 Mz +yll < llzll + llyll, Vae,yeV.

Hint: Showing the first two properties is very easy; to show the last property (triangle inequality), assume
the Cauchy-Schwarz inequality holds: |(z,y)| < ||z ||y/|-

Property 1 By properties 2 and 3 of the inner-product we have ||az| = (az,ax)'/? = {ag(a:,a?)}l/z =

lal [l].
Property 2 By property 1 of the inner-product ||z = (x,2)'/? > 0 Vz € V, and ||z|| = (z,z)'/? = 0iffz = 0.
Property 3 By properties 2 and 3 of the inner-product, and by the Cauchy-Schwarz inequality, it holds that:

lz+yl> = (z+y,2+y)

z,x) +2(z,y) + (¥, )
z,z) +2|(z,y)| + (v,9)
z,z) +2 ||zl [lyll + (v,9)
=zl +2 [lz] llyll + llyll®

(el + w12,

(
(
(
(

VARVANI

which gives ||z + y| < ||z] + ||ly]]-

Exercise 1.3. Let F(z) denote a twice-differentiable function of one variable. Assuming only the mean-

value theorem of integral calculus: F'(b) = F(a)+ f; F'(t) dt, derive the following variants of the Taylor-series
expansion with integral remainder:

(a) F(z+h)=F(z)+ [T F/(t) dt.

This follows from the mean-value theorem on substituting a = x and b = x + h.



(b) F(z+h) = F(z) +h [, F'(x+¢h) de.

The idea is to transform the variable of integration in part (a). Consider the new variable £ such that
t = x + h&. As t varies between the limits of integration = and = + h, we find that £ varies between 0
and 1. Substituting for ¢ in part (a) and using dt = hd¢ gives the result.

(c) Flx+h)=F(z)+hF'(x) +h [§ [F'(z + &h) — F'(x))] dg.

From part (b) we have

Fla+h) — F(m)+h/1F’(m+§h)d§

F(x) + hF'(z) — hF'(z) + h /1 F'(z + €h) de.
0

Since hF'(x) is independent of £, the variable of integration, we may take it under the integral sign to
give

Fla+h) = Fz)+hF'(z) + h /O /(2 + €h) — F' ()] de
as required.

(d) F(z+h)= F(x)+hF'(z)+h? fol F"(x+&h)(1=¢)d¢. (Hint: Try expanding F'(x+ h) using a formula
analogous to part (b) and differentiate with respect to h using the chain rule.)
Since F'(x) is differentiable, we can apply the formula of part (b) to the function F’, giving

F'(a +h) :F’(a:)+h/1F”(x+§h) de. (1.1)
0

Another expression for F’(xz + h) can be found by considering the result of part (b):

1
Fla+h) = F(z) +h/ F'(x + €h) de. (1.2)
0

For fixed z we can differentiate F'(z + h) with respect to h. Applying the chain-rule for differentiation
gives

dF(z + h ! !

% = F'(z+h) :/ F’(x+§h)d§+h/ F"(z + €h)E dE. (1.3)

0 0

Combining (1.1), (1.2) and (1.3), so that the terms F’(x + h) and fol F'(x 4 &h) d€ are eliminated, we
obtain the required identity. In particular, taking 2 x (1.2) — h x (1.3) + h x (1.1) gives the result.

Exercise 1.4. Find the gradient vector F(x) = Vf(x) of the following functions, and then find the Jacobian
matrix of F(x). (The Jacobian matrix of F(z) = Vf(z) is the same as the Hessian matrix V2f(z) of f(z)).

2 2
(a) f(z) =2(z2 — %) + (z1—3)".
First we form the row vector f’(x) by forming the first partials with respect to each variable. This gives
fl(x) = ( —8xi(wy —a) +2(x1 — 3) 4(w2—2i) ).
The gradient of f is just the transpose of this vector, giving

g(x) = (f'(2)T = ( —8561(:1:24(— a3) +2§(x1 _3) ) |

To — X7
The Hessian matrix is defined as the derivative of the gradient g, so that

_( —8(my— %) + 1627 +2 —8x
H(x) = ( 81, 4 .

Since the Hessian is always a symmetric matriz (if the second partials are continuous), you can use this
as a check on your work: if you work out the off-diagonal partial derivatives separately, they should
come out to be the same value.



(b) f(z) = (221 + x2) + 4(x2 — x3)*.
Forming the gradient vector as in part (a), we get

8I1 + 4562
g(l‘) = 4ZL'1 + 212 + 16(%2 - £B3)3
—16(%2 — 1’3)3

The Hessian matrix is just the “Jacobian” of this column vector. Plugging away at it gives the Hessian
matrix H(x) as

8 4 0
4 2+448(z9 —x3)% —48(w2 — w3)?
0 —48(9:2 — 333)2 48($2 — 5133)2

Exercise 1.5. Find f'(z), Vf(z) and V2f(z) for the following functions of n variables.

(a) f(z) = 22THz, where H is an n x n constant matrix.

The trick is to and work out the derivatives without getting too buried in lots of indices. First, we
write H in terms of its columns {h;},

hlj

haj
Hz(hl ho --- hn),wherehj:

hnj
This partition of H allows us to write f(z) as
f(z) = ga"Ho = 32" (Z hﬂ‘j) =35> (@ hy)z;.
j=1 j=1

Taking the partial derivative with respect to z;, and using standard rules about differentiating products,
we obtain

of(x) - A(z"hy) 1 - v, \0%; - d(z"hy) 1,.T
oz, _2; Py xj—i—zjz:;(x hj)axi—QjZZ; oz, xj+ 52" hy.

The first term under the summation can be written as
8($Thj) 8 "
—_ = Trhyi = hii.
al‘i 8$i 162_:1 kT Y

Since zTh; = Z?zl hj;z;, it follows that

of(x) - -
T = 22l 3D hyiz,
¢ j=1 j=1

and Of(x)/0x; is half the sum of the ith elements of Hz and H'z, with
f'@) = ga (H+HT).
The gradient Vf(x) is the transpose of f/(z), giving
Vf(z) = 2(H" + H)z.
The Hessian matrix V2f(x) is defined as the first derivative (i.e., Jacobian) of the gradient vector.

Hence
Vi (2) = (Vf(2)) = S((H z)' + (Hz)').

Given any constant matrix A, the Jacobian of Ax is A, which implies that
Vf(z) = 3(H" + H).

Notice that the Hessian is a symmetric matrix, even though H is not symmetric.



(b)

(c)

f(z) =bTAx — LaTATAz, where A is an m x n constant matrix and b is a constant m-vector.
If we use H = AT A in part (a) we have
F(2) = bTA — 1aT(ATA + (ATA)T) = b7A — 2TATA.
the last equality following from the fact that AT A is symmetric. Forming the transpose for g(z) gives
Vf(z) = f'(x)T = ATb — ATAz = AT (b — Ax).

Finally, we have from part (a)

V2f(x) = (Vf(x)) = L(ATA + (ATA)") = A"A.

Fla) = ol = (S, a2)

First we compute 0f/0x;:

0f (x) 1( ) 1
— =3 :I:z) 2T = ;.
or; 2\ El
This implies that
1 1 1 1
fl(z) = ( —T1 &2 . T ) =T,
(@) el el B ]

and Vf(z) = z/||z|.
Differentiating with respect to x; for i # j, we obtain

Pf) 0 (0f@))_ 9 () _
Ox;0z;  Ox; \ Ox; )  Ow \z||) =¥
Similarly, for ¢ = j, we have

*f(z) _ 0 <3f(w)> 9 <bLg> _ =l —965.

0x7  Ox; \ Oy ) Ox; \llall) =l

Therefore, the Hessian of f(z) may be written:

||x||2 — xf —TiTy - —T1T,
1 —T2X1
V(z) = —
EE
@y |z))? — 22
= o lelPr = ey = (1 aa")
B T T I

where & is the unit vector x/||z||.

Exercise 1.6.* Create a MATLAB m-file of the form:

function [F,J] = D(x)

F
J

=[a;bl;
=[cd; ef];

where the expressions for a, b, c,d, e, f are chosen so that the function returns the 2 x 1-vector-valued function
F(z) and the 2 x 2 Jacobian matrix J(z) for the function F(x) from part (a) of Problem 1.4. Use this m-file
to compute F and J at x = (1, 0)T; and z = (1, 1)7. Capture the output from the computation and turn
it in with the homework.

See the TA for the solution to this problem.



