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THE EMERGENCE OF GRAVITATIONAL WAVE SCIENCE:

100 YEARS OF DEVELOPMENT

OF MATHEMATICAL THEORY, DETECTORS,

NUMERICAL ALGORITHMS, AND DATA ANALYSIS TOOLS

MICHAEL HOLST, OLIVIER SARBACH, MANUEL TIGLIO, AND MICHELE VALLISNERI

In memory of Sergio Dain

Abstract. On September 14, 2015, the newly upgraded Laser Interferometer
Gravitational-wave Observatory (LIGO) recorded a loud gravitational-wave
(GW) signal, emitted a billion light-years away by a coalescing binary of two
stellar-mass black holes. The detection was announced in February 2016, in
time for the hundredth anniversary of Einstein’s prediction of GWs within the
theory of general relativity (GR). The signal represents the first direct detec-
tion of GWs, the first observation of a black-hole binary, and the first test
of GR in its strong-field, high-velocity, nonlinear regime. In the remainder of

its first observing run, LIGO observed two more signals from black-hole bina-
ries, one moderately loud, another at the boundary of statistical significance.
The detections mark the end of a decades-long quest and the beginning of
GW astronomy: finally, we are able to probe the unseen, electromagnetically
dark Universe by listening to it. In this article, we present a short historical
overview of GW science: this young discipline combines GR, arguably the
crowning achievement of classical physics, with record-setting, ultra-low-noise
laser interferometry, and with some of the most powerful developments in the
theory of differential geometry, partial differential equations, high-performance
computation, numerical analysis, signal processing, statistical inference, and
data science. Our emphasis is on the synergy between these disciplines and
how mathematics, broadly understood, has historically played, and continues
to play, a crucial role in the development of GW science. We focus on black
holes, which are very pure mathematical solutions of Einstein’s gravitational-
field equations that are nevertheless realized in Nature and that provided the
first observed signals.
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Outline (Starting Part 1)

1 The Einstein Equations
Einstein Evolution and Constraint Equations
The Conformal Method(s) of 1944, 1973, 1974
Analysis of the Conformal Method: 1973–1995, 1996–2007
The 1973–1995 CMC Results
The 1996–2007 Near-CMC Results

2 New Conformal Method Results from our Group (2008-2019)
First Results for Far-From-Constant Mean Curvature (2008–)
Results for Rough Metrics (2009–)
Compact with Boundary Case (2013–)
Asymptotically Euclidean Case (2014–)
Multiplicity through Analytic Bifurcation Theory (2017–)

3 Design and Analysis of Approximations and Algorithms
AFEM Convergence with Goal Functions
AFEM Convergence in the FEEC Setting
FEEC A Priori Error Estimates for Evolution Problems

4 References

UCSD Center for Computational Mathematics March 24, 2019



Some
Research

Problems in GR

Michael Holst

Einstein
Equations
Einstein Equations

Conformal Method

Results: 1973–2007

1973–1995: CMC

1996–2007: Near-CMC

Conformal
Theory
Far-From-CMC (2008–)

Rough Metrics (2009–)

Compact Case (2013–)

AE Case (2014–)

Multiplicity (2017–)

Algorithms
AFEM Convergence

FEEC with AFEM

FEEC for Evolution

References

General Relativity and Einstein’s Equations
Einstein’s 1915 general theory of relativity states what we experience
as gravity is simply the curvature of our spacetime when it is viewed
as a geometrical objectM, known as a pseudo-Riemannian manifold.

Newtonian vs. General Relativistic Theories of Gravity:

Curvature in our spacetimeM is governed by the Einstein Equations.

The Einstein Equations also predict that accelerating masses produce
gravitational waves, perturbations in the metric tensor ofM.

Black-Hole merger depictions (shamelessly stolen from LIGO website):

UCSD Center for Computational Mathematics March 24, 2019
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LIGO
LIGO (Laser Interferometer Gravitational-wave Observatory) is one of
several recently constructed gravitational detectors.

The design of LIGO is based on measuring distance changes between
objects in perpendicular directions as the ripple in the metric tensor
propagates through the device.

The two L-shaped LIGO observatories (in Washington and Louisiana),
with legs at 1.5m meters by 4km, have phenomenal sensitivity, on the
order of 10−15m to 10−18m.

The LIGO arms in Louisiana and Hanford, Washington:

UCSD Center for Computational Mathematics March 24, 2019
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LIGO and LISA

LISA (Laser Interferometer Space Antenna) is different, space-based
design currently under construction.

LISA is based on three triangulated L-shaped detectors mounted on
satellites, separated by much larger distances than possible on Earth.

(Images courtesy of LIGO website)

UCSD Center for Computational Mathematics March 24, 2019
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LIGO Detection in Fall 2015
On 2-11-2016, the NSF announced an upcoming conference press for
Feb 11 with the humble title “Scientists to Provide Update on the Search
for Gravitational Waves”. It would not take place in some dusty lab, but
rather at the National Press Club in Washington, DC.

When the press conference began on Feb. 11th, the LIGO Laboratory
director David Reitze simply announced: “Ladies and gentlemen. We
have detected gravitational waves. We did it.”

On 9-14-2015, both LIGO detectors nearly simultaneously registered a
clear, loud, and violent inspiral, collision, merger, and ringdown of a
binary black hole pair, each of which had a solar mass in range 10-50,
with roughly equivalent of three solar masses in energy released as
gravitational radiation. Radiation traveled outward from at speed of light,
reaching LIGO detectors roughly 1.3 billion years later.

What was detected is an incredibly close match to computer simulations
of wave emission from this type of binary collision, produced through
very detailed numerical simulations of the full Einstein equations.

This talk focuses on the analysis and numerical treatment of some
core PDE problems arising in gravitational wave science.

UCSD Center for Computational Mathematics March 24, 2019
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The Math: Curved Spacetime is a Manifold
The Einstein equations are a system of differential equations describing
how spacetime curves in response to matter and energy.

Geometric piece of the equations can be understood by examining how
derivatives in calculus must be modified when space (or spacetime) is
curved:

Flat: V a
,bc − V a

,cb = 0, V a
,b =

∂V a

∂xb .

Curved: V a
;bc − V a

;cb = Ra
dbcV d , V a

;b = V a
,b + Γa

bcV c .

Let us note what form Ra
dbc takes, and give names to some objects:

Ra
dbc = Γa

bd,c − Γa
cd,b + Γa

ecΓe
bd − Γa

ebΓe
cd ; Riemann tensor

Rab = R c
acb , R = R a

a ; Ricci tensor, scalar curvature
Gab = Rab − 1

2 Rgab; Einstein tensor
Tab; Stress-energy tensor

The Einstein equations relate the mathematical object (Gab) describing
curvature of spacetimeM to the mathematical object (Tab) representing
matter and energy content of our spacetime:

Gab = κTab, 0 6 a 6 b 6 3, κ = 8πG/c4. (10 equations)

UCSD Center for Computational Mathematics March 24, 2019
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The Math: Curved Spacetime is a Manifold

Space and time are all mixed up in Einstein’s Equation: Gab = κTab.

It was hoped it could be reformulated as an initial-value problem;
“future” would then be determined by solution of a time-dependent
differential equation for the “metric” of space at any future time.

This program was completed by various mathematicians by the 1950’s;
the famous book of Hawking & Ellis in 1973 summarizes this theory.

However, there remain a number of very important but difficult open
problems in the mathematical theory of these equations, as well as in
the development of reliable and efficient numerical methods.

UCSD Center for Computational Mathematics March 24, 2019
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Mathematics Research Problems in GR
Some of the major open mathematical problems in GR concern a subset
of the Einstein equations known as the Einstein constraint equations.

These equations are non-dynamical, but they must hold at every
moment of time for any solution to the Einstein equations; i.e., they must
hold on every space-like hypersurface within the spacetime. The
constraint equations have been studied intensively since the 1940’s.

Mathematics research questions that arise with this problem are:
1 Do solutions to the constraints always exist? If so, are they

unique?
2 How smooth are such solutions? Can we derive a priori bounds?
3 Can we develop a basic approximation theory for computing?
4 Can we establish error estimates for specific methods?
5 Can we design adaptive algorithms? Parallel algorithms?
6 Can we prove convergence of the algorithms?

Our research group has worked on various aspects of these questions
over the last decade. In 2009 we contributed a new analysis approach
proving existence results that led to a resurgence of activity on the
problem.

I will describe this and more recent work in remainder of the talk.UCSD Center for Computational Mathematics March 24, 2019
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Einstein Constraints and Conformal Method
Twelve-component Einstein evolution system for (ĥab, k̂ab) on a foliation.

Constrained by coupled eqns on spacelikeM =Mt , with τ̂ = k̂abĥab,
3R̂ + τ̂ 2 − k̂abk̂ab − 2κρ̂ = 0, ∇̂aτ̂ − ∇̂bk̂ab − κ̂ja = 0.

York conformal decomposition: split initial data into 8 freely specifiable
pieces plus 4 determined via: ĥab = φ4hab, τ̂ = k̂abĥab = τ , and

k̂ab = φ−10[σab + (Lw)ab] +
1
4
φ−4τhab, ĵa = φ−10ja, ρ̂ = φ−8ρ.

Produces coupled elliptic system for conformal factor φ and a wa:

−8∆φ+ Rφ+
2
3
τ 2φ5 − (σab + (Lw)ab)(σab + (Lw)ab)φ−7 − 2κρφ−3 = 0,

−∇a(Lw)ab +
2
3
φ6∇bτ + κjb = 0.

Differential structure onM defined through background 3-metric hab:

(Lw)ab = ∇awb +∇bwa− 2
3

(∇cwc)hab, ∇bV a = V a
;b = V a

,b + Γa
bcV c ,

V a
,b =

∂V a

∂xb , Γa
bc =

1
2

had
(
∂hdb

∂xc +
∂hdc

∂xb −
∂hbc

∂xd

)
. (Γa

bc = Γa
cb)

UCSD Center for Computational Mathematics March 24, 2019
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The Conformal Method

Lichnerowicz and Choquet-Bruhat Papers: 1944 and 1958

A. Lichnerowicz. L’integration des équations de la gravitation
relativiste et le problème des n corps. J. Math. Pures Appl.,
23:37–63, 1944.

Y. Choquet-Bruhat. Théorème d’existence pour certains systèmes
d’équations aux dérivées partielles non linéaires. Acta Math.,
88:141–225, 1952.

Some Key Conformal Method Papers: 1971–1996

J. York. Gravitational degrees of freedom and the initial-value
problem. Phys. Rev. Lett., 26(26):1656–1658, 1971.

J. Isenberg. Constant mean curvature solution of the Einstein
constraint equations on closed manifold. Class. Quantum Grav.
12 (1995), 2249–2274.

J. Isenberg and V. Moncrief. A set of nonconstant mean curvature
solutions of the Einstein constraint equations on closed manifolds.
Class. Quantum Grav. 13 (1996), 1819–1847.

No real progress made on “non-CMC case” during 1996–2008.

UCSD Center for Computational Mathematics March 24, 2019
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My Starting Point: 1998
I was exposed to GR at Caltech as postdoc from 1993–1997.

Arriving at UCSD in 1998, I submitted my first NSF proposal for
Analysis and numerical treatment of the Einstein constraints. My Plan:

1 Completely specify boundary-value formulation relevant to physicists.

2 Nail down what is known about the solution theory (existence, etc).

3 Nail down the literature in a priori estimates for the solution.

4 Use (1)-(3) to do numerical analysis research.

The numerical analysis research was going to be:

1 A priori error estimates for some choice of FEM.

2 Some type of solution theory for the discrete FEM system.

3 A posteriori error estimates (an indicator) for FEM.

4 Design of adaptive algorithms around the error indicator.

5 Design of nonlinear solver (based around Newton’s method).

6 Design of fast linear solvers (multigrid and domain decomposition).

7 Parallel algorithms (got to have those).

8 Publish papers on all of the steps.

I ended up working on both lists (1998–2019); this is my talk.
UCSD Center for Computational Mathematics March 24, 2019
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The Conformal Method as an Elliptic System
LetM be a space-like Riemannian 3-manifold with (possibly empty)
boundary submanifold ∂M, split into disjoint submanifolds satisfying:

∂DM∪ ∂NM = ∂M, ∂DM∩ ∂NM = ∅. (∂DM∩ ∂NM = ∅)

Metric hab associated withM induces boundary metric σab, giving
boundary value formulation of conformal method for φ and wa:

Lφ+ F (φ,w) = 0, inM, (Hamiltonian)

Lw + F(φ) = 0, inM, (Momentum)

(Lw)abνb + Ca
bwb = V a

φ on ∂NM, and wa = wa
D on ∂DM,

(∇aφ)νa + kw (φ) = g on ∂NM, and φ = φD on ∂DM,

where:
Lφ = −∆φ, (Lw)a = −∇b(Lw)ab,

F (φ,w) = aRφ+ aτφ5 − awφ
−7 − aρφ−3, F(φ) = bb

τφ
6 + bb

j ,

with:

aR = R
8 , aτ = τ2

12 , aw = 1
8 [σab + (Lw)ab]2, aρ = κρ

4 , bb
τ = 2

3∇
bτ , bb

j = κjb,

(Lw)ab = ∇awb +∇bwa − 2
3 (∇cwc)hab, ∇bV a = V a

;b = V a
,b + Γa

bcV c ,

V a
,b =

∂V a

∂xb , Γa
bc =

1
2

had
(
∂hdb

∂xc +
∂hdc

∂xb −
∂hbc

∂xd

)
. (Γa

bc = Γa
cb)
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The 1973–1995 CMC Results
∇bτ = 0: Constant Mean Curvature (CMC):⇒ constraints de-couple.

There were a number of CMC results generated during 1973–1995 by
exploiting the fact that the constraint equations decouple.

You can solve the momentum constraint equation once and for all, and
then you solve the Hamiltonian constraint once.

The research came down to understanding under what conditions the
Hamiltonian constraint was solvable.

Some Key CMC Papers: 1974–1995
N. Ó. Murchadha and J. York. Initial-value problem of general
relativity I. General formulation and physical interpretation. Phys.
Rev. D, 10(2):428–436, 1974.
N. Ó. Murchadha and J. York. Initial-value problem of general
relativity II. Stability of solution of the initial-value equations. Phys.
Rev. D, 10(2):437–446, 1974.
J. Isenberg. Constant mean curvature solution of the Einstein
constraint equations on closed manifold. Class. Quantum Grav.
12 (1995), 2249–2274.

UCSD Center for Computational Mathematics March 24, 2019



Some
Research

Problems in GR

Michael Holst

Einstein
Equations
Einstein Equations

Conformal Method

Results: 1973–2007

1973–1995: CMC

1996–2007: Near-CMC

Conformal
Theory
Far-From-CMC (2008–)

Rough Metrics (2009–)

Compact Case (2013–)

AE Case (2014–)

Multiplicity (2017–)

Algorithms
AFEM Convergence

FEEC with AFEM

FEEC for Evolution

References

The 1996–2007 Near-CMC Results
∇bτ 6= 0: Non-CMC case: ⇒ constraints couple.

In the Non-CMC case, the constraints couple together; through 1996
there were no results, until the Isenberg-Moncrief paper of 1996 under
near-CMC conditions (to be explained). This led to several results.

Some of the Near-CMC Papers: 1996–2007
J. Isenberg and V. Moncrief, A set of nonconstant mean curvature
solution of the Einstein constraint equations on closed manifolds,
Class. Quantum Grav. 13 (1996), 1819–1847.

J. Isenberg and J. Park. Asymptotically hyperbolic non-constant
mean curvature solutions of the Einstein constraint equations.
Class. Quantum Grav., 14:A189–A201, 1997.

Y. Choquet-Bruhat, J. Isenberg, and J. York. Einstein constraint on
asymptotically Euclidean manifolds. Phys. Rev. D, 61:084034,
2000.

P. Allen, A. Clausen, and J. Isenberg. Near-constant mean
curvature solutions of the Einstein constraint equations with
non-negative Yamabe metrics. Available as arXiv:0710.0725
[gr-qc], 2007.

UCSD Center for Computational Mathematics March 24, 2019
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Yamabe Classification of Manifolds
Take a smooth metric hab and a smooth positive function u > 0, and
form a new metric through multiplication u4hab. A simple calculation
shows that the scalar curvature R that hab generates, and the scalar
curvature Ru that u4hab generates, are related by the Yamabe problem:

−8∆u + Ru = Ruu5.

If one has two metrics and they can be related through the Yamabe
problem in this way, we say they are in the same conformal class.

Yamabe Classification of Smooth Metrics: Let u > 0 solve the Yamabe
problem. Then hab lies in one of three disjoint conformal classes:

Ru > 0⇒ hab ∈ Y+, Ru < 0⇒ hab ∈ Y−, Ru = 0⇒ hab ∈ Y0.

Yamabe Classification of Non-Smooth Metrics: Yamabe problem on
closed manifolds for rough metrics is still open; however, one can still
get the following [HNT09]. Let (M, h) be a smooth, closed, connected
Riemannian manifold with dimension n > 3 and consider a metric
h ∈ W s,p, where we assume sp > n and s > 1. Then two conformally
equivalent rough metrics cannot have scalar curvatures with distinct
signs.

UCSD Center for Computational Mathematics March 24, 2019
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A Look at the 1996 Near-CMC Result

Fixed-point arguments involve composition G(φ) = T (φ,S(φ)), where:

1 Given φ, solve MC for w : w = S(φ)

2 Given w , solve HC for φ: φ = T (φ,w)

Map S : X → R(S) ⊂ Y is MC solution map;
Map T : X ×R(S)→ X is some fixed-point map for HC.

Theorem: (Isenberg-Moncrief) For case R = −1 on a closed manifold
(hab ∈ Y−), strong smoothness assumptions, and near-CMC conditions,
Isenberg-Moncrief show this is a contraction in Hölder spaces:

[φ(k+1),w (k+1)] = G([φ(k),w (k)]).

Proof Outline: Maximum principles, barriers, Banach algebra
properties, near-CMC condition, contraction-mapping argument.

Near-CMC condition: ‖∇τ‖r < C infM |τ |, where Lr norm depends on
context, can be viewed as engineering fixed-point map G to be a
contraction, and ensures coupling between the two equations is weak.

Appears in two distinct places: (1) Construction of the contraction G,
and (2) Construction of the set U on which G is a contraction.

UCSD Center for Computational Mathematics March 24, 2019
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First Results for Far-From-CMC

[HNT08] MH, G. Nagy, and G. Tsogtgerel, Far-from-constant mean curvature
solutions of Einstein’s constraint equations with positive Yamabe metrics,
Phys. Rev. Lett. 100 (2008), no. 16, 161101.1–161101.4, Available as
arXiv:0802.1031 [gr-qc].

[HNT09] MH, G. Nagy, and G. Tsogtgerel, Rough solutions of the Einstein
constraints on closed manifolds without near-CMC conditions, Comm.
Math. Phys. 288 (2009), no. 2, 547–613, Available as arXiv:0712.0798
[gr-qc].

∇bτ = 0: Constant Mean Curvature (CMC):⇒ constraints de-couple.

As noted earlier, in Non-CMC case, constraints couple together; first result in
1996 for the near-CMC case, leading to other near-CMC results through 2007.

In 2008, we introdued a new analysis framework [HNT08, HNT09] that removed
all need for CMC or near-CMC conditions in order to prove existence of solutions.
This is now called the far-from-CMC case, or simply the non-CMC case.

Results in [HNT08, HNT09, Max09] (and most results after 2008) are based on
using different variations of G, and then showing that these variatons have
appropriate compactness properties. This is combined with the construction of
global barriers, and then using topological fixed-point arguments.
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The 2008 Framework: Mappings S and T
We outline the near-CMC-free fixed-point argument from [HNT09].

We first make precise the definitions of the maps S and T .

To deal with the non-trivial kernel that exists for L on closed manifolds,
fix an arbitrary positive shift s > 0. Now write the constraints as

Lsφ+ Fs(φ,w) = 0, (1)

(Lw)a + F(φ)a = 0, (2)
where Ls : W 2,p → Lp and L : W 2,p → Lp are defined as

Lsφ := [−∆ + s]φ, (Lw)a := −∇b(Lw)ab,

and where Fs : [φ−, φ+]×W 2,p → Lp and F : [φ−, φ+]→ Lp are

Fs(φ,w) := [aR − s]φ+ aτφ5 − awφ
−7 − aρφ−3, F(φ)a := ba

τφ
6 + ba

j .

Introduce the operators S : [φ−, φ+]→ W 2,p and
T : [φ−, φ+]×W 2,p → W 2,p as

S(φ) := −L−1F(φ), (3)

T (φ,w) := −L−1
s Fs(φ,w). (4)

Both maps are well-defined when s > 0 (Ls is invertible) and when there
are no conformal Killing vectors (L is invertible).
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Schauder Approach to get at Non-CMC
Alternatives to Contraction Mapping Theorem that are more topological:

Theorem 1 (Schauder Theorem)
Let X be a Banach space, and let U ⊂ X be a non-empty, convex,
closed, bounded subset. If G : U → U is a compact operator, then there
exists a fixed-point u ∈ U such that u = G(u).

Here is a variation of Schauder tuned for the constraints.

Theorem 2 (Coupled Schauder Theorem)
Let X and Y be Banach spaces, and let Z be a Banach space with
compact embedding X ↪→ Z. Let U ⊂ Z be non-empty, convex, closed,
bounded, and let S : U → R(S) ⊂ Y and T : U ×R(S)→ U ∩ X be
continuous maps. Then, there exist w ∈ R(S) and φ ∈ U ∩ X such that

φ = T (φ,w) and w = S(φ). (5)

Proof Outline: Show G(φ) = i ◦ T (φ,S(φ)) : U ⊂ Z → U ⊂ Z is
compact and then use Schauder, where i : X → Z is (compact)
canonical injection.

UCSD Center for Computational Mathematics March 24, 2019
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Rough Metrics
[HNT09] MH, G. Nagy, and G. Tsogtgerel, Rough solutions of the Einstein

constraints on closed manifolds without near-CMC conditions, Comm.
Math. Phys. 288 (2009), no. 2, 547–613, Available as arXiv:0712.0798
[gr-qc].

[HT13] MH and G. Tsogtgerel, The Lichnerowicz equation on compact manifolds
with boundary, Class. Quantum Grav., 30 (2013), pp. 1–31. Available as
arXiv:1306.1801 [gr-qc].

[HMT18] MH, C. Meier, and G. Tsogtgerel, Non-CMC solutions of the Einstein
constraint equations on compact manifolds with apparent horizon
boundaries, Comm. Math. Phys. 357 (2018), no. 2, 467–517, Available as
arXiv:1310.2302 [gr-qc].

[BH15] A. Behzadan and MH, Rough solutions of the Einstein constraint equations
on asymptotically flat manifolds without near-CMC conditions, Submitted.
Available as arXiv:1504.04661 [gr-qc].

Relevant to the study of the Einstein evolution equations is the existence of
solutions to the constraint equations for weak or rough background metrics hab .
Initial results were developed for the CMC case in [yCB04, Max05a, Max06].

Requires careful examination of multiplication properties of the spaces [BH15].

Non-CMC rough solution results for closed manifolds appear in [HNT09],
compact manifolds with boundary in [HT13, HMT18], AE manifolds in [BH15].
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Brief Look at a Non-CMC Theorem

One of the three main results for rough non-CMC solutions on compact
manifolds in [HNT09] is contained in the theorem.

Theorem 3 (Non-CMC W s,p solutions)
Let (M, hab) be a 3-dimensional closed Riemannian manifold. Let hab ∈ W s,p

admit no conformal Killing field and be in Y+(M), where p ∈ (1,∞) and
s ∈ (1 + 3

p ,∞) are given. Select q and e to satisfy:

1
q ∈ (0, 1) ∩ (0, s−1

3 ) ∩ [ 3−p
3p , 3+p

3p ],

e ∈ (1 + 3
q ,∞) ∩ [s − 1, s] ∩ [ 3

q + s − 3
p − 1, 3

q + s − 3
p ].

Assume that the data satisfies:

τ ∈ W e−1,q if e > 2, and τ ∈ W 1,z otherwise, with z = 3q
3+max{0,2−e}q ,

σ ∈ W e−1,q , with ‖σ2‖∞ sufficiently small,

ρ ∈ W s−2,p ∩ L∞+ \ {0}, with ‖ρ‖∞ sufficiently small,

j ∈ W e−2,q , with ‖j‖e−2,q sufficiently small.

Then there exists φ ∈ W s,p with φ > 0 and w ∈ W e,q solving the constraints.

UCSD Center for Computational Mathematics March 24, 2019
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Really Rough Metrics
[HM13] MH and C. Meier, Generalized solutions to semilinear elliptic PDE with

applications to the Lichnerowicz equation, Acta Appicandae Mathematicae,
130 (2014), pp. 163–203. Available as arXiv:1112.0351 [math.NA].

One of the difficulties associated with obtaining rough solutions to the
conformal formulation is that the spaces W s,p(M) are not closed under
multiplication unless s > d/p (where d is the spatial dimension).

This restriction is a by-product of a more general problem, which is that
there is no well-behaved definition of distributional multiplication that
allows for the multiplication of arbitrary distributions.

Limits spaces one considers when developing weak formulation of a
given elliptic partial differential equation, and places a restriction on
regularity of the specified data (gab, τ, σ, ρ, j) of the constraint equations.

In [HM13], we extend the work of Mitrovic-Pilipovic (2006) and
Pilipovic-Scarpalezos (2006) to solve problems similar to Hamiltonian
constraint with distributional coefficients in Colombeau algebras.

These generalized spaces allows one to circumvent the restrictions
associated with Sobolev coefficients and data, and thereby consider
problems with coefficients and data of much lower regularity.
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Compact with Boundary Case
[HT13] MH and G. Tsogtgerel, The Lichnerowicz equation on compact manifolds

with boundary, Class. Quantum Grav., 30 (2013), pp. 1–31. Available as
arXiv:1306.1801 [gr-qc].

[HMT18] MH, C. Meier, and G. Tsogtgerel, Non-CMC solutions of the Einstein
constraint equations on compact manifolds with apparent horizon
boundaries, Comm. Math. Phys. 357 (2018), no. 2, 467–517, Available as
arXiv:1310.2302 [gr-qc].

Compact manifoldsM with boundary Σ = ∂M emerge when one
eliminates asymptotic ends or singularities from the manifold.

For Lichnerowicz, one needs to impose boundary conditions for φ.

On asymptotically flat manifolds, one has [YP82]
φ = 1 + Ar 2−n + ε, with ε = O(r 1−n), and ∂rε = O(r−n), (6)

where A is multiple total energy, r is the flat-space radial coordinate.
Idea is: cut out asymptotically Euclidean end along the sphere with
large radius r and impose Dirichlet condition φ ≡ 1 at boundary.

Improvement via differentiating (6) with respect to r and eliminating A:
∂rφ+

n − 2
r

(φ− 1) = O(r−n). (7)

Equating right hand side to zero gives accurate total energy.
UCSD Center for Computational Mathematics March 24, 2019
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Approximating Black Hole Data
Main approach: excise region around singularities and solve in exterior.

Such are “inner”-boundaries; again need boundary conditions.

In 1982, York and Piran [YP82] introduce

∂rφ+
n − 2

2a
φ = 0, for r = a. (8)

Means r = a is a minimal surface; under appropriate data conditions
minimal surface is a trapped surface.

Trapped surface key: implies existence of event horizon outside surface.

Trapped surface conditions more general than minimal surface can be
derived using expansion scalars for outgoing/ingoing future directed null
geodesics (Dain 2004 [Dai04], Maxwell 2005 [Max05b]).

After some work, one sees Dain and Maxwell approaches both lead to
inner and outer boundary conditions (our kw (φ) earlier) of form:

∂νφ+ bHφ+ bθφe + bτφq̄ + bwφ
−q̄ = 0, q̄ = n/(n − 2). (9)

Minimal surface condition (8) corresponds to the choice
bθ = bτ = bw = 0, and bH = n−2

2 H, H = mean extrinsic curvature of Σ.

The outer Robin condition (7) is bH = (n − 2)H, bθ = −(n − 2)H with
e = 0, and bτ = bw = 0.

UCSD Center for Computational Mathematics March 24, 2019
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Constraints Are Coupled Through Boundary

Something interesting here: the Lichnerowicz equation couples to the
momentum constraint through the boundary conditions.

Even in CMC (constant mean curvature) setting (where τ ≡ const),
constraint equations generally do not decouple.

The only reasonable way to decouple the constraints is to consider
τ ≡ 0 and e = −q̄.

Main tools used in paper are order-preserving maps iteration together
with maximum principles and some results from conformal geometry.

These techniques sensitive to signs of coefficients in (9).

Defocusing case (preferred signs): (e − 1)bθ > 0, bτ > 0, and bw 6 0.

Non-Defocusing case: Otherwise.

Results for defocusing case (terminology motivated by dispersive
equations) more or less complete (see below).
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CMC Case: Main Results in [HT13]

The main results and supporting tools appearing in [HT13] are:

Justification of Yamabe classification of rough metrics on compact
manifolds with boundary.

Basic result on conformal invariance of Lichnerowicz equation.

A uniqueness result for the Lichnerowicz equation.

An order-preserving maps theorem for manifolds with boundary.

Construction of upper and lower barriers that respect the trapped
surface conditions.

Combination of the results above to produce a fairly complete
existence and uniqueness theory for the defocusing case.

Combination of the results above to produce some partial results
for the non-defocusing case.

Some perturbation results (looking ahead to the asymptotically
Euclidean case).

Existence results for Lichnerowicz equation (not full CMC case).

Some results for smooth metrics, ignoring the boundary coupling,
appear in [Dilt14].

UCSD Center for Computational Mathematics March 24, 2019
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Non-CMC case: Main Results in [HMT18]

What about the non-CMC case?

In fact, even the CMC case was not yet discussed; this is because the
CMC assumption does not actually decouple the constraints due to the
boundary coupling, and we have only solved the Lichnerowicz equation.

The extension of the results in [HT13] to the non-CMC (far, near, and
also CMC itself) is considered in [HMT18].

Some of the main results appearing in [HMT18] are:

Number of necessary supporting results for momentum constraint
that were not needed for pure Lichnerowicz case in [HT13].

Construction of upper and lower barriers that respect trapped
surface conditions in coupled setting (delicate boundary coupling).

Combination of Schauder argument from [HNT09] with results for
Lichnerowicz equation from [HT13] to give existence results for
near-CMC and far-CMC data, analogous to known results for
closed manifolds.

CMC case comes as (still coupled) special case of near-CMC
result.
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Yamabe Classes: Rough/Compact/Boundary
Yamabe classification of rough metrics: The Yamabe problem for rough
metrics on compact manifolds with boundary is again still open; the
work [Esc92, Esc96] was for smooth metrics. However, as in the closed
case, one can still get the following result [HT13] which is all we need:

Theorem 4 (Yamabe Classification of Rough Metrics)
Let (M, g) be a smooth, compact, connected Riemannian manifold with
boundary, where we assume that the components of the metric g are
(locally) in W s,p, with sp > n and s > 1. Let the dimension of M be
n > 3. Then, the following are equivalent:

a) Yg > 0 (Yg = 0 or Yg < 0).

b) Yg(q, r , b) > 0 (resp. Yg(q, r , b) = 0 or Yg(q, r , b) < 0) for any
q ∈ [2, 2q̄), r ∈ [2, q̄ + 1) with q > r , and any b ∈ R.

c) There is a metric in [g] whose scalar curvature is continuous and
positive (resp. zero or negative), and boundary mean curvature is
continuous and has any given sign (resp. is identically zero, has
any given sign).

In particular, two conformally equivalent metrics cannot have scalar
curvatures with distinct signs.
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Asymptotically Euclidean Case
[DIM14] J. Dilts, J. Isenberg, R. Mazzeo, and C. Meier. Non-cmc solutions of the

Einstein constraint equations on asymptotically euclidean manifolds. 2014
Class. Quantum Grav. 31 (2014), 065001.

[HMa14] MH and C. Meier, Non-CMC solutions of the Einstein constraint equations
on asymptotically Euclidean manifolds with apparent horizon boundaries,
Class. Quantum Grav., 32 (2014), No. 2, pp. 1-25. Available as
arXiv:1403.4549 [gr-qc].

[BH15] A. Behzadan and MH, Rough solutions of the Einstein constraint equations
on asymptotically flat manifolds without near-CMC conditions, Submitted.
Available as arXiv:1504.04661 [gr-qc].

The most complete mathematical model of general relativity involves
the evolution and constraint equations on open, asymptotically
Euclidean manifolds, with black hole interior boundary conditions.

Existence results analogues to those for closed manifolds have been
known since shortly after the closed results developed.

In [HMa14], we develop non-CMC existence results for asymptotically
Euclidean manifolds with black hole interior boundaries.

In [BH15], we extend this work to rough metrics as part of the research
program begun in 2004/2005.
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Multiplicity Results
[HK11] MH and V. Kungurtsev, Numerical bifurcation analysis of conformal

formulations of the Einstein constraints, Phys. Rev. D, 84 (2011),
pp. 124038(1)–124038(8). Available as arXiv:1107.0262 [math.NA].

[HM14] MH and C. Meier, Non-uniqueness of solutions to the conformal
formulation, Available as arXiv:1210.2156 [gr-qc].

[DH17] J. Dilts, MH, T. Kozareva, and D. Maxwell, Numerical Bifurcation Analysis
of the Conformal Method, Submitted. Available as arXiv:1710.03201
[gr-qc].

[HMM18] MH, D. Maxwell, and R. Mazzeo, Conformal Fields and the Structure of the
Space of Solutions of the Einstein Constraint Equations, Submitted.
Available as arXiv:1711.01042 [gr-qc].

New non-CMC existence results lack uniqueness. In 2009, Maxwell
explicitly demonstrated existence of multiple solutions for a special
symmetric model [Max09b], and now also [Max14b].

More general multiplicity result now apparently shown by [GiNg15b].

Folds in solution curves observed numerically by Pfeiffer, O’Murchadha
and others for non-standard formulations of the constraints; i.e., the
mechanism is different from Maxwell and Gicquaud-Nguyen results.
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Multiplicity Results
In [HK11], we applied pseudo-arclength numerical continuation to
numerically track the parameterized solution curve in the problem
previously examined by Pfeiffer and O’Murchadha, and numerically
identify a fold.

In [HM14] we use Liapunov-Schmidt reduction from analytic bifurcation
theory to show that linearization of the non-standard system develops a
one-dimensional kernel; related results appear in [ChGi15].

Both papers employ the following λ-parameterization of the model:

Lφ+ aRφ+ λ2aτφ5 − awφ
−7 − e−λaρφ5 = 0, (10)

Lw + λbb
τφ

6 = 0. (11)

In [DH17] we perform careful numerical bifurcation analysis of standard
formulation of the conformal method, and demonstrate complex fold and
bifurcation phenomena consistent with analytical results.

In [HMM18] we examine the drift method, a new alternative to the
conformal method, and show it reproduces conformal method results.
Unlike conformal method, it can be applied even when the underlying
metric admits conformal Killing (but not true Killing) vector fields. We
also prove that the absence of true Killing fields is generic.
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Filling holes after we have fallen into them...

[BH15] A. Behzadan and MH, Multiplication in Sobolev-Slobodeckij spaces,
revisited. Submitted for publication. Available as arXiv:1512.07379
[math.AP].

[BH18b] A. Behzadan and MH, Sobolev-Slobodeckij spaces on compact manifolds,
revisited. Submitted for publication. Available as arXiv:1704.07930v3
[math.AP].

[BH17] A. Behzadan and MH, On certain geometric operators between Sobolev
spaces of sections of tensor bundles on compact manifolds equipped with
rough metrics. Submitted for publication. Available as arXiv:1704.07930v2
[math.AP].

[BH18a] A. Behzadan and MH, Some remarks on the space of locally
Sobolev-Slobodeckij functions. Submitted for publication. Available as
arXiv:1806.02188 [math.AP].

Trying to fill in some holes in the literature.
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Outline (Starting Part 3)

1 The Einstein Equations
Einstein Evolution and Constraint Equations
The Conformal Method(s) of 1944, 1973, 1974
Analysis of the Conformal Method: 1973–1995, 1996–2007
The 1973–1995 CMC Results
The 1996–2007 Near-CMC Results

2 New Conformal Method Results from our Group (2008-2019)
First Results for Far-From-Constant Mean Curvature (2008–)
Results for Rough Metrics (2009–)
Compact with Boundary Case (2013–)
Asymptotically Euclidean Case (2014–)
Multiplicity through Analytic Bifurcation Theory (2017–)

3 Design and Analysis of Approximations and Algorithms
AFEM Convergence with Goal Functions
AFEM Convergence in the FEEC Setting
FEEC A Priori Error Estimates for Evolution Problems
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Design and Analysis of Approximations
[H01] MH, Adaptive numerical treatment of elliptic systems on manifolds, Adv.

Comput. Math., 15 (2001), pp. 139–191. Available as arXiv:1001.1367
[math.NA].

[HS12a] MH and A. Stern, Geometric variational crimes: Hilbert complexes, finite
element exterior calculus, and problems on hypersurfaces, Found.
Comput. Math. 12 (2012), no. 3, 263–293, Available as arXiv:1005.4455
[math.NA].

[HS12b] MH and A. Stern, Semilinear mixed problems on Hilbert complexes and
their numerical approximation, Found. Comput. Math. 12 (2012), no. 3,
363–387, Available as arXiv:1010.6127 [math.NA].

[GL19] MH and M. Licht, Geometric transformation of finite element methods:
Theory and applications. Submitted for publication. Available as
arXiv:1809.10354 [math.NA].

We consider now second-order elliptic on Riemanniann manifolds

−∆u + f (u) = 0,

coupled to other equations, perhaps involving the vector Laplacean:

−∆u = − grad div u + curl curl u.

Our goal is to develop good PG methods for these problems.
UCSD Center for Computational Mathematics March 24, 2019
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Mixed Formulations and Stable Methods
Consider the vector Laplacean:

−∆u = − grad div u + curl curl u,

and natural variational formulation: Find u ∈ H(curl; Ω) ∩ H0(div; Ω) s.t.∫
Ω

[(∇·u)(∇·v)+(∇×u)·(∇×v)] dx =

∫
Ω

f ·v dx , ∀v ∈ H(curl; Ω)∩H0(div; Ω).

Mixed formulation is an alternative: Find (σ, u) ∈ H1(Ω)× H(curl ; Ω) s.t.∫
Ω

(στ − u · ∇τ) dx = 0, ∀τ ∈ H1(Ω),∫
Ω

[∇σ · v + (∇× u) · (∇× v)] dx =

∫
Ω

f · v dx , ∀v ∈ H(curl ; Ω).

FEM based on FIRST formulation: Does not correctly capture either
geometry (domains with corners) or topology (non-simply connected
domains); see worked examples in the core FEEC
papers [AFW06, AFW10].

FEM based on SECOND formulation: Turns out to work extremely well.

Why is this the case?
UCSD Center for Computational Mathematics March 24, 2019
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Helmholtz-Hodge Decomposition

Given any vector field f ∈ L2(Ω), we have the Helmholtz-Hodge
orthogonal decomposition into curl-free, divergence-free, and harmonic
functions:

f = ∇p +∇× q + h,

where h is harmonic (divergence- and curl-free).

The mixed formulation is essentially computing this decomposition for
h = 0, and finite element methods are somehow exploiting this.

Connection to de Rham cohomology: The space of harmonic forms is
isomorphic to the first de Rham cohomology of the domain Ω; the
number of holes in Ω is the first Betti number, and creates obstacles to
well-posed formulations of elliptic problems.

Q: What is an appropriate mathematical framework for understanding
this abstractly, that will allow for a methodical construction of “good”
finite element methods for these types of problems?

A: Hilbert (Banach, Bochner, etc) Complexes.
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Hilbert Complexes

Hilbert complex (W , d) consists of sequence of Hilbert spaces W k with
closed densely-defined linear maps dk : V k ⊂ W k → V k+1 ⊂ W k+1 s.t.
dk ◦ dk−1 = 0 for each k .

· · · // V k−1 dk−1
// V k dk

// V k+1 // · · ·

Given Hilbert complex (W , d), the domain complex (V , d) consists of the
domains V k ⊂ W k , endowed with the graph inner product

〈u, v〉V k = 〈u, v〉W k + 〈dk u, dk v〉W k+1 .

A canonical example is the L2-de Rham complex of differential forms on
a Riemannian n-manifold Ω:

0 // H1(Ω)
grad // H(curl,Ω)

curl // H(div,Ω)
div // L2(Ω) // 0

Special case is Ω ⊂ R3, where Ω is a two-dimensional hypersurface.

UCSD Center for Computational Mathematics March 24, 2019
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Hodge Decomposition and Poincaré Inequality
Given Hilbert complex (W , d):

space of k-cocycles: Zk = ker dk

space of k-coboundaries: Bk = dk−1V k−1

dual space of k-coboundaries: B∗k = d∗k V ∗k+1

kth harmonic space is intersection: Hk = Zk ∩Bk⊥

kth cohomology space is quotient: Zk/Bk

kth reduced cohomology space is quotient: Zk/Bk .
One says (W , d) is bounded if each dk is bounded, closed if each dk

has closed range.

Harmonic space Hk is isomorphic to reduced cohomology space Zk/Bk .

Closed complex: reduced cohomology space ≡ cohomology space.

If (W , d) is closed, we have abstract versions of Hodge decomposition

W k = Bk ⊕ Hk ⊕B∗k ,

V k = Bk ⊕ Hk ⊕ Zk⊥.

and Poincaré inequality (dk : Zk⊥ → Bk+1 is a V-bounded bijection)

‖v‖V 6 Cp‖dk v‖V , ∀Zk⊥.

UCSD Center for Computational Mathematics March 24, 2019
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Mixed Variational Formulation
Abstract “mixed version” of Poisson equation −∆u = f for scalar
functions via abstract Hodge Laplacian for Hilbert complexes.

Abstract Hodge Laplacian is operator L = dd∗ + d∗d, unbounded
W k → W k with domain

DL =
{

u ∈ V k ∩ V ∗k
∣∣∣ du ∈ V ∗k+1, d∗u ∈ V k−1

}
.

If u ∈ DL solves Lu = f , then satisfies variational principle

〈du, dv〉+ 〈d∗u, d∗v〉 = 〈f , v〉 , ∀v ∈ V k ∩ V ∗k .

Problems: well-posedness (harmonic functions in kernel) and building
(finite element) subspaces.

Solution: mixed problem: Find (σ, u, p) ∈ V k−1 × V k × Hk s.t.

〈σ, τ〉 − 〈u, dτ〉 = 0, ∀τ ∈ V k−1,

〈dσ, v〉+ 〈du, dv〉+ 〈p, v〉 = 〈f , v〉 , ∀v ∈ V k ,

〈u, q〉 = 0, ∀q ∈ Hk .

(12)

First equation: implies σ = d∗u, weakly enforces condition u ∈ V k ∩ V ∗k .

Second equation: 〈p, v〉 allows for existence of solutions when f 6⊥ Hk .

Third equation fixes issue of non-uniqueness by requiring u ⊥ Hk .
UCSD Center for Computational Mathematics March 24, 2019
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PG in Hilbert Complexes: AFW and FEEC
Galerkin-like method: Find (σh, uh, ph) ∈ V k−1

h × V k
h × Hk

h s.t.

〈σh, τ〉 − 〈uh, dτ〉 = 0, ∀τ ∈ V k−1
h ,

〈dσh, v〉+ 〈duh, dv〉+ 〈ph, v〉 = 〈f , v〉 , ∀v ∈ V k
h ,

〈uh, q〉 = 0, ∀q ∈ Hk
h.

(13)

One of the main results in the core papers on the Finite Element
Exterior Calculus (FEEC) [AFW06, AFW10] is the following.

Let (Vh, d) be a family of subcomplexes of the domain complex (V , d) of
a closed Hilbert complex, parameterized by h and admitting uniformly
V -bounded cochain projections πh, and let (σ, u, p) ∈ V k−1 × V k × Hk

be the solution of (12) and (σh, uh, ph) ∈ V k−1
h × V k

h × Hk
h the solution of

problem (13). Then

‖σ − σh‖V + ‖u − uh‖V + ‖p − ph‖
≤ C

(
inf

τ∈V k−1
h

‖σ − τ‖V + inf
v∈V k

h

‖u − v‖V + inf
q∈V k

h

‖p − q‖V +µ inf
v∈V k

h

‖PBu − v‖V

)
,

where µ = µk
h = sup

r∈Hk

‖r‖=1

∥∥∥(I − πk
h

)
r
∥∥∥.
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Variational Crimes

Basic “variational” problem: Find u ∈ V such that

B (u, v) = F (v), ∀v ∈ V , (14)

where V is a Hilbert space, B : V × V → R is a bounded, coercive
bilinear form, and F ∈ V ∗ is a bounded linear functional.

Galerkin method: Find uh ∈ Vh ⊂ V such that

B (uh, v) = F (v), ∀v ∈ Vh. (15)

Problem: One often cannot compute Vh, and/or bilinear form B (·, ·) and
functional F (·) on a subspace of V .

Left with approximating space Vh 6⊂ V , approximate forms
Bh : Vh × Vh → R and Fh ∈ V ∗h .

Generalized Galerkin: Find uh ∈ Vh such that

Bh (uh, v) = Fh(v), ∀v ∈ Vh 6⊂ V . (16)

Called “variational crimes”. Framework for the analysis: Strang lemmas.

UCSD Center for Computational Mathematics March 24, 2019
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Variational Crimes in Hilbert Complexes
Approximation by an arbitrary complex:

· · · // V k

πk
h

��

dk
// V k+1

πk+1
h

��

// · · ·

· · · // V k
h

ikh

OO

dk
h // V k+1

h

ik+1
h

OO

// · · · .

FEEC considers Wh ⊂ W a subcomplex, ih inclusion of Wh into W .

Our new approximation problem: Find (σh, uh, ph) ∈ V k−1
h ×V k

h ×Hk
h s.t.

〈σh, τh〉h − 〈uh, dhτh〉h = 0, ∀τh ∈ V k−1
h ,

〈dhσh, vh〉h + 〈dhuh, dhvh〉h + 〈ph, vh〉h = 〈fh, vh〉h , ∀vh ∈ V k
h ,

〈uh, qh〉h = 0, ∀qh ∈ Hk
h.

(17)

In [HS12a] we show that: If (σ, u, p) ∈ V k−1 × V k × Hk is a solution to
(12) and (σh, uh, ph) ∈ V k−1

h × V k
h × Hk

h is a solution to (17), then

‖σ − ihσh‖V + ‖u − ihuh‖V + ‖p − ihph‖
≤ C

(
inf

τ∈ihV k−1
h

‖σ − τ‖V + inf
v∈ihV k

h

‖u − v‖V + inf
q∈ihV k

h

‖p − q‖V +µ inf
v∈ihV k

h

‖PBu − v‖V

+ ‖fh − i∗h f‖h + ‖I − Jh‖ ‖f‖
)
.
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Application to Surface Finite Elements

Here, µ = µk
h = sup

r∈Hk

‖r‖=1

∥∥∥(I − ik
hπ

k
h

)
r
∥∥∥.

Theorem establishes convergence, as long as our approximations
satisfy ‖I − Jh‖ → 0 and ‖fh − i∗h f‖h → 0 when h→ 0. We show
fh = πhf is sufficient to get a convergent solution.

In the case of surface finite element methods (SFEM), the term involving
Jh is determined by the approximation order of the approximate surface.

In particular, we show how a priori error estimates of Dziuk (1988) and
Demlow (2009) for SFEM for the Laplace Beltrami on 2- and 3-surfaces
can be completely recovered by our theorem.

However, our FEEC approach gives more transparent error analysis for
SFEM, looking more like Strang-type lemmas in Hilbert complexes.

Moreover, our results hold for general dimensional Euclidean
hypersurfaces of co-dimension one, and general Riemannian manifolds
as well as more general mixed formulations involving general k -forms.

Results extended in [HS12b] to semilinear case: One needs only local
Lipschitz result (again) together with some nonlinear analysis.
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Goal-Oriented AFEM Convergence Results
[CHX07] L. Chen, MH, and J. Xu, The finite element approximation of the nonlinear

Poisson-Boltzmann Equation, SIAM J. Numer. Anal., 45 (2007),
pp. 2298–2320. Available as arXiv:1001.1350 [math.NA].

[HP16] MH and S. Pollock, Convergence of goal-oriented adaptive finite element
methods for nonsymmetric problems, Numerical Methods for Partial
Differential Equations, 32 (2016), pp. 479–509. Available as
arXiv:1108.3660 [math.NA].

[HPZ15] MH, S. Pollock, and Y. Zhu, Convergence of goal-oriented adaptive finite
element methods for semilinear problems, Computing and Visualization in
Science, 17 (2015), pp. 43–63. Available as arXiv:1203.1381 [math.NA].

In [HP16, HPZ15] we develop AFEM convergence theory for a class of
goal-oriented adaptive finite element algorithms (GOAFEM).

Following Mommer and Stevenson (2009) for symmetric problems,
in [HP16] we establish GOAFEM contraction for nonsymmetric
problems. Our approach uses newer contraction frameworks.

In [HPZ15], we prove convergence of GOAFEM for semilinear
problems. We first establish quasi-error contraction of primal problem,
then establish contraction of combined primal-dual quasi-error, giving
convergence with respect to the quantity of interest.
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An FEEC-AFEM Convergence Result
[CHX09] L. Chen, MH, and J. Xu, Convergence and optimality of adaptive mixed

finite element methods, Math. Comp., 78 (2009), pp. 35–53. Available as
arXiv:1001.1353 [math.NA].

[HLM19] MH, Y. Li, A. Mihalik, and R. Szypowski, Convergence and optimality of
adaptive mixed methods for Poisson’s equation in the FEEC framework.
Accepted for publication in J. Comput. Math., 2019. Available as
arXiv:1306.1886 [math.NA].

[HLL19] MH, Y. Li, and M. Licht, Convergence and optimality of adaptive mixed
methods on surfaces in the FEEC framework. In Preparation, 2019.

AFEM Convergence theory for mixed methods not complete; main
difficulty is lack of error (quasi-)orthogonality.
In [CHX09], we establish convergence and optimality of AFEM for mixed
Poisson on simply connected domains in two dimensions.
Argument: quasi-orthogonality result exploits error orthogonal to
divergence free subspace, with non-divergence-free part bounded by
data oscillation via discrete stability.
In 2012, Demlow and Hirani develop FEEC a posteriori indicators.
In [HLM19] we prove AFEM-FEEC convergence complexity for
Hodge-Laplace (k=n) on domains of arbitrary topology and dimension.
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FEEC Estimates for Evolution Problems
[GHZ17] A. Gillette, MH, and Y. Zhu, Finite element exterior calculus for evolution

problems, Journal of Computational Mathematics, 35 (2017), pp. 186–212.
Available as arXiv:1202.1573 [math.NA].

[HT18] MH and C. Tiee, Finite element exterior calculus for parabolic evolution
problems on Riemannian hypersurfaces. J. Comput. Math., 36 (2018),
no. 6, pp. 792–832. Available as arXiv:1509.05524 [math.NA].

[GH19] E. Gawlik and MH, Finite element exterior calculus for parabolic problems
on evolving surfaces. In Preparation, 2019.

[GHL19] E. Gawlik, MH, and M. Licht, A Scott-Zhang interpolant and piecewise
Bramble-Hilbert lemma for finite element exterior calculus. In Preparation,
2019.

In [GHZ17], we extend most of the results in [HS12a, HS12b] to mixed
formulations of linear and semilinear parabolic and hyperbolic problems.

Combines FEEC for elliptic problems with classical approaches to
evolution problems via semi-discrete FEM, viewing solutions as lying in
time-parameterized Banach spaces (Bochner spaces).

Building on Thomée (2006) (and others) for parabolic problems and
Geveci (1988) (and others) for hyperbolic problems, establish a priori
estimates for Galerkin approximation in natural Bochner norms.
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FEEC Estimates for Evolution Problems

In [GHZ17] we recover results of Thomée and Geveci for two-dimensional
domains and lowest-order mixed method as a special case, giving extension to
arbitrary spatial dimension and entire family of mixed methods.

We also show how the Holst and Stern framework [HS12a, HS12b] allows for
extensions of these results to semi-linear evolution problems.

In [HT18], the results for parabolic problems in [GHZ17] are extended to (fixed)
Riemannian hypersurfaces.

In [GH19], the results for parabolic problems on hypersurfaces in [HT18] are
extended to evolving Riemannian hypersurfaces.

Some key supporting results needed for the results in [GH19] appear in [GHL19].
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Thank You for Listening!

References may be found on the following slides...
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