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We describe a chain of algorithms for molecular surface and volumetric mesh generation.
We take as inputs the centers and radii of all atoms of a molecule and the toolchain outputs
both triangular and tetrahedral meshes that can be used for molecular shape modeling and
simulation. Experiments on a number of molecules are demonstrated, showing that our
methods possess several desirable properties: feature-preservation, local adaptivity, high
quality, and smoothness (for surface meshes). We also demonstrate an example of molec-
ular simulation using the finite element method and the meshes generated by our method.
The approaches presented and their implementations are also applicable to other types
of inputs such as 3D scalar volumes and triangular surface meshes with low quality, and
hence can be used for generation/improvment of meshes in a broad range of applications.
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1. Introduction

In addition to providing a geometric representation of an object for graphical purposes,
mesh generation is also in great demand in numerical simulation using finite/boundary
element methods and has been extensively studied in both applied mathematics [7] and
computational engineering [1,27]. Although different types of meshes may be generated
depending on the numerical solvers being employed, we restrict ourselves in this paper to
triangular (surface) and tetrahedral (volumetric) meshes. In particular, we consider mesh
generation for molecular applications, namely, meshes that are generated from a set of
centers and radii of atoms in a molecule and are then used for solving various types of
partial differential equations (PDE) arising in molecular modeling.

Molecular mesh generation requires good approximation of molecular surfaces. There
are two primary ways to construct such surfaces: one is based on the “hard sphere” model
[36] and the other is based on the level set of a “soft” or smooth function [23]. In the first
model, a molecule is treated as a list of “hard” spheres with different radii, from which
three types of surfaces can be extracted. The van der Waals surface (or envelope) is defined
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as the union of the spheres with their intersecting portions removed. An alternative way
of defining molecular surfaces is by rolling a sphere over the van der Waals surface, where
the loci of the probing sphere gives rise to the so-called solvent accessible surface (SAS)
[31]. The radius of the probe sphere is chosen as the size of the solvent molecules (usually
water). Another widely used surface is known as solvent excluded surface (SES), which
is defined as the “inward-facing” part of the probing sphere as it rolls over the molecules
[18,23,36]. The molecular surface can be represented analytically by a list of seamless
surface patches [4,16,43] and triangular meshes can be generated using such tools as
MSMS [37].

In contrast, the “soft” model treats each atom typically as a Gaussian-like smoothly
decaying scalar function in <3 that approximates certain characteristic function of the
atom [12,20,23]. The molecular surfaces, including the van der Waals surface, SAS and
SES, are then approximated by appropriate level sets (or isocontours) [12,20]. In addition
to the Gaussian function, some other functions such as piecewise polynomial splines could
also be used to approximate the characteristics of atoms [28,34,38]. Once a volumetric
function is computed, the molecular surfaces are extracted and triangulated using iso-
contouring techniques such as the marching cube [33] and the dual contouring method [30].
The triangulated surface mesh can be better represented by NURBS [5] or algebraic spline
models [54]. Another more recent approach to molecular surface generation, based on a
“soft” model, was described in [9], where the molecular surface was given by minimizing
the surface free energy.

A good mesh in general should have the following properties: (1) feature-preserving, (2)
adaptivity, and (3) high quality. The first two properties require that the mesh generation
should capture the important features of a molecule and have the control of producing
dense meshes at regions of interest and coarse meshes elsewhere. The quality of a mesh
can be measured by either geometry-dependent [32] or solution-dependent [11] criteria.
Some quantities based on specific biochemical applications, such as the sensitivity of a
mesh to small atomic displacements [8,44], may also be considered as an indicator to the
mesh quality. The one we use in our study is by measuring the angles of the triangulated
molecular surfaces, a strategy commonly used in the mesh generation and smoothing
community [46,55]. Specifically we try to maximize the minimal angle and minimize the
maximal angle in a triangular mesh, so that the resulting angle distribution (or histogram)
would be centering as much as possible near 60◦. The mesh quality should be guaranteed
in molecular modeling and simulation due to the fact that “skinny” triangles often cause
poor approximation quality in finite/boundary element methods [27]. The molecular mesh
generation approaches mentioned above can usually capture the features of a molecule
(although the definition of a feature may vary), but they have either no mesh adaptation
(e.g., [16]) or very low mesh quality (e.g., [9,37]).

While almost all of the methods discussed above were developed for molecular surface
generation, there are increasing demands for volumetric meshing methods/tools in the
bio-molecular modeling community, especially when finite element numerical approaches
are taken into consideration. LBIE [52] is one of very few existing tools that can generate
volumetric meshes for biomolecular applications. As a Gaussian-based “soft” model, it
integrates the surface triangulation, tetrahedron generation and smoothing into a stand-
alone software package, reading PDB files or 3D volumes as its inputs. An octree-based
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data structure is employed to construct both the surface and volumetric meshes that
preserve important geometric features and show adaptive triangles (tetrahedra) as well.
While the qualities of the interior tetrahedral meshes generated by LBIE are usually good,
there are many “sharp” triangles on the surfaces due to the iso-contouring method used in
LBIE, and hence many tetrahedra near the surfaces can be poorly shaped. A new version
of LBIE has been introduced in [53] by applying surface and tetrahedral mesh smoothing
techniques (such as edge contraction and weighted averaging). However, the tetrahedral
mesh smoothing turns out to be slow and sometimes the algorithm fails.

In the present paper we describe a new mesh generation framework in which we aim to
produce feature-preserving, adaptive, and high quality surface (triangular) and volumetric
(tetrahedral) meshes for molecular modeling and other applications. Similar to LBIE [52],
our method is based on the level set of a Gaussian kernel function that approximates the
molecular surface of a given molecule. We use the marching cube method to extract iso-
surfaces; hence our method can deal with volumes of arbitrary sizes, unlike LBIE that
requires the volume sizes be 2n + 1 for an integer n. An angle-based approach is adapted
to improve the mesh quality while retaining the features and smoothness of molecular
surfaces. In our toolchain we also develop an adaptive mesh coarsening technique, by
which the resulting meshes are made finer in regions of high curvatures or by some other
user-specified criteria and coarser elsewhere. Along with the mesh coarsening, a normal-
based surface mesh smoothing technique is employed to guarantee the smoothness of
the meshes while they are being coarsened. Once a good surface mesh is generated,
the tetrahedra (interior and exterior of the molecular surfaces) are constructed using the
constrained Delaunay triangulation as implemented in Tetgen [39,40].

2. Methods

In this section we describe the algorithms that we use to construct the triangular surface
and tetrahedral volumetric meshes. For the particular purpose of molecular modeling, the
inputs to our toolchain are a list of centers and radii of atoms (e.g., PQR files [19] or PDB
files [10] with radii defined by users), although our tool can also read as inputs an arbitrary
3D scalar volume or a triangulated surface mesh with very low quality. Figure 1 shows the
pipeline of our mesh generation toolchain. In the following subsections, we shall explain
each step in detail.

2.1. Initial Surface Meshing
In our mesh generation methods, the initial surface mesh is defined by the level set of

the Gaussian kernel function that is computed from a list of atoms with centers (ci) and
radii (ri) as follows:

F (x) =
N∑

i=1

e
Bi(

‖x−ci‖2
r2
i

−1)
, (1)

where the negative parameter Bi is called the blobbyness that controls the spread of
the characteristic function of each atom. We usually treat the blobbyness as a constant
parameter (denoted by B0) for all atoms. When B0 goes to zero, F (x) becomes constant
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and all features disappear. Our experiments on a number of molecules show that a
blobbyness of −0.5 produces a good resolution for molecular simulations.

An alternate way of defining the Gaussian kernel function is by putting the blobbyness
and radius of each atom together as a constant, as formulated in the following equation
[53]:

G(x) =
N∑

i=1

eκ(‖x−ci‖2−r2
i ), (2)

where κ = Bi

r2
i

is a constant for all atoms i = 1, · · · , N . From a computational point

of view, the formulation in Equation (2) might be more beneficial due to the constant
decay rate κ that may lead to a fast Gaussian summation using the recursive scheme as
described in [48]. We shall discuss this strategy in detail in Section 4. But for all examples
shown below, the Gaussian functions are calculated by F (x) as defined in Equation (1).

Once the Gaussian kernel function is computed and summed up for all atoms, the
molecular surface is then defined by the level set as F (x) = t0, where t0 is the isovalue
[12,23,53]. The surface (triangular) mesh can be constructed by either one of two iso-
contouring techniques − the marching cube method [33] and the dual contouring method
[30]. In our mesh generator we employ an implementation of the marching cube method.
Figure 2(a) shows an example of the isosurface extracted using this method. To illustrate
the details better, shown here is only a small portion of the molecular surface of the
domains 3/4 of rat CD4 (PDB-ID: 1CID). From this example, we can see that: (1) the
iso-contouring technique can extract very smooth surfaces, but (2) many triangles are
extremely “sharp”.

2.2. Surface Mesh Quality Improvement
The mesh quality can be improved by a combination of three major techniques: insert-

ing/deleting vertices, swapping edges/faces, and moving the vertices without changing
the mesh topology [22]. The last one is the main strategy we use to improve the mesh
quality in our methods. For surface meshes, however, moving the vertices may change the
shape of the surface. Therefore, two other criteria should also be taken into account: (1)
important features (e.g., sharp boundaries, concavities, holes, etc.) on the original surface
should be preserved as much as possible, and (2) the surface should be kept smooth while
the vertices are moved.

To characterize the important features on a surface mesh, we compute so-called local
structure tensor [21,45,50,51] as follows:

T (v) =
M ′∑

i=1
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, (3)

where (n(i)
x , n(i)

y , n(i)
z ) is the normal of the ith neighbor of a vertex v and M ′ is the total

number of neighbors (Note: the neighbors considered may be more than the incident
ones of a vertex. They could extend by several “layers” and the number of the “layers”
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considered depends on the size of the local features). The normal of a vertex is defined
by the weighted average of the normals of all its incident triangles. The idea of the
local structure tensor is derived from the well-known principal component analysis (PCA)
technique [29]. It basically captures the principal orientations of a set of vectors in space.
Let the eigenvalues of Equation (3) be λ1, λ2, λ3 and λ1 ≥ λ2 ≥ λ3. Then the local
structure tensor can capture the following features: (a) Spheres and saddles: λ1 ≈ λ2 ≈
λ3 > 0; (b) Ridges and valleys: λ1 ≈ λ2 >> λ3 ≈ 0; (c) Planes: λ1 >> λ2 ≈ λ3 ≈ 0.

As we mentioned earlier, the quality of a mesh can be improved by maximizing the
minimal angles. Let x be the vertex that we want to move for quality improvement, and
the (incident) neighbors be orderly denoted by vi, i = 1, · · · ,M , where M is the total
number of the neighbors. The idea of the angle-based method described in [55] is to move
x to a new position x̄ such that x̄ maximizes the angles 6 (x,vi,vi−1) and 6 (x,vi−1,vi)
for i = 1, · · · ,M with v0 := vM . Let xi be the projection of x to the bisector of the angles
6 (vi−1,vi,vi+1) for i = 1, · · · ,M with vM+1 := v1 (see Figure 3), then x̄ is approximated
in [55] by x̄ = (x1 + x2 + · · · , +xM)/M . This method has been extended in [46] for
improving quadrilateral mesh quality, but only two-dimensional meshes were discussed in
both papers.

We make some modifications of the 2D angle-based method as described in [55], in
order to deal with the surface mesh processing. First, x is projected onto the bisecting
plane, instead of the bisecting line, of 6 (vi−1,vi,vi+1), as shown in Figure 3. Secondly,
the average of xi is weighted by a decreasing function of the angle 6 (vi−1,vi,vi+1):

x̄ =
1

∑M
i=1(di + 1)

M∑

i=1

(di + 1)xi, (4)

where di is the dot product of the normalized vectors of (vi−1 − vi) and (vi+1 − vi). The
use of weighted average is due to the fact that a smaller angle of 6 (vi−1,vi,vi+1) is more
sensitive to the change of x̄.

The above two modifications are usually sufficient in practice to improve the 2D/3D
mesh quality. However, as we mentioned earlier, dealing with surface meshes requires
additional care − the geometric features on the surface mesh should be preserved as
much as possible. To this end, we take the advantage of the local structure tensor by
mapping the new position x̄ to each of the eigenvectors of the tensor calculated at the
old position x and scaling the mapped vectors with the corresponding eigenvalues. Let
~e1, ~e2, ~e3 denote the eigenvectors and λ1, λ2, λ3 be the corresponding eigenvalues of the
local structure tensor valued at x. The modified vertex x̂ is calculated as follows:

x̂ = x +
3∑

k=1

1

1 + λk

((x̄− x) · ~ek)~ek. (5)

The use of the eigenvalues as a weighted term in the above equation is essential in preserv-
ing the features (with high curvatures) and to keep the improved surface mesh as close as
possible to the original mesh by encouraging the vertices to move along the eigen-direction
with small eigenvalues (or in other words, with low curvatures). Figure 2(b) shows the
surface mesh with quality improved, compared to the original mesh as shown in Figure
2(a).
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2.3. Surface Mesh Coarsening and Smoothing
The surface meshes extracted by iso-contouring techniques (e.g., the marching cube

method) often contain a large number of elements and are nearly uniform everywhere. To
reduce the computational cost, adaptive meshes are usually preferred where fine meshes
only occur in regions containing features. The idea of mesh coarsening is straightforward
− choosing a node to delete and re-triangulating the region containing the incident neigh-
bors. The local structure tensor is again used as a way to quantify the features. Let x de-
note the node being considered for deletion and the neighboring nodes be vi, i = 1, · · · ,M ,
where M is the total number of the neighbors. The maximal length of the incident edges
at x is denoted by L(x) = maxM

i=1{d(x,vi)} where d() is the Euclidean distance. Ap-
parently L(x) indicates the sparseness of the mesh at x. Let λ1(x), λ2(x), λ3(x) be the
eigenvalues of the local structure tensor calculated at x, satisfying λ1(x) ≥ λ2(x) ≥ λ3(x).
Then the node x is deleted if and only if the following condition holds:

L(x)α

(
λ2(x)

λ1(x)

)β

< T0, (6)

where α and β are chosen to balance between the sparseness and the curvature of the
mesh. In our experiments, they both are set as 1.0 by default. The threshold T0 is user-
defined and also dependent on the values of α and β chosen. When α and β are fixed,
larger T0 will cause more nodes to be deleted.

Mesh coarsening can greatly reduce the mesh size to a user-specified order. However,
the nodes on the “holes” are often not co-planar; hence the re-triangulation of the “holes”
often results in a bumpy surface mesh. The bumpiness can be reduced or removed by
smoothing the surface meshes. We employ the idea of anisotropic vector diffusion [35,49]
and apply it to the normals of the surface mesh being considered. This normal-based
approach turns out to preserve sharp features and prevent volume shrinkages [15,47]
better than the traditional vertex-based approach. Figure 2(c) shows the result after the
mesh coarsening and normal-based mesh smoothing.

2.4. Tetrahedron Generation
Tetgen [39,40] is an outstanding software tool that can generate high-quality tetrahedral

meshes from a triangulated surface, using constrained Delaunay triangulation. However,
the input surface mesh must have decent quality; otherwise, Tetgen would insert a large
number of additional nodes or fail. Our surface mesh generation and post-processing
algorithms described above provide meshes with quality high enough to be used as inputs
in Tetgen to produce tetrahedral meshes. Besides the triangulated surface, our toolchain
has three other outputs for a given molecule: the interior tetrahedral mesh, the exterior
tetrahedral mesh, and both meshes together. For the interior tetrahedral mesh, we force
all atoms of the given molecule to be on the mesh nodes. The exterior tetrahedral mesh
is generated between the surface mesh and a bounding sphere whose radius is usually set
as about 40 times larger than the size of the molecule being considered. The size of a
molecule is defined as follows. We first compute the average of all atom centers; then the
maximal distance between the atoms to the averaged center is defined as the size of the
molecule.
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3. Results

In this section we show the mesh generation results on a number of molecules. The
atom coordinates are extracted from the PDB files [10] and the radius for each atom is
given in a user-specified table. Our program can also read the PQR format in which the
radius information is attached to each atom [19].

3.1. Surface Mesh Generation and Post-Processing
All examples shown here are generated using the following parameters, and the initial

surface meshes are coarsened only once unless otherwise specified. The blobbyness of
the Gausian kernel function is set as −0.5. All 3D volumes are discretized based on
the spacing distance of 0.5Å per grid. The initial molecular surfaces are extracted using
the marching cube method [33] at the isovalue of 1.0. The threshold T0 for the mesh
coarsening in Equation (6) is set as 0.2.

The first example that we demonstrate here is domains 3/4 of rat CD4, a small molecule
of 1,381 atoms, taken from the Protein Data Bank (PDB-ID: 1CID). A volume of 130 ×
132× 176 grids is generated using the Gaussian-based blurring technique as described in
Section 2.1. Part of the initial surface was shown in Figure 2(a). The exterior surface
view of the entire molecule after quality improvement is shown in Figure 4(a). There are
62, 454 nodes and 124, 904 triangles in this mesh. After mesh coarsening and normal-
based smoothing followed by another round of quality improvements, the mesh size is
reduced to 8, 846 nodes and 17, 688 triangles. The mesh quality is also greatly improved,
from 0.02◦ (minimal angle) and 179.10◦ (maximal angle) for the initial mesh, to 20.22◦

(minimal angle) and 130.71◦ (maximal angle) for the processed mesh. Figure 4(b) and (c)
show the exterior and interior views of the processed mesh. Thanks to the feature-based
adaptivity in our meshing tools, most important features in the original mesh are well
preserved in spite of a significant size reduction. Note that we can adjust the blobbyness
parameter in Equation 1 to generate molecular surfaces at different “resolutions”. Figure
4(d) shows the surface of 1CID when the blobbyness is chosen as −2.5.

Another example we investigated is the mouse acetylcholinesterase (mAChE) molecule,
which has a total of 8, 362 atoms yielding a volume of 162× 142× 192 grids. The initial
mesh contains 96, 046 nodes and 192, 088 triangles and is reduced to 19, 795 nodes and
39, 586 triangles after the mesh coarsening, as shown in Figure 5(a). The active site is
indicated by a dashed rectangle near the center, and an interior and closer look at the
active site, rotated by 90◦, is also shown. The mesh quality is significantly improved:
23.22◦ (minimal angle) and 125.93◦ (maximal angle), in contrast to the minimal angle
(0.02◦) and maximal angle (179.55◦) in the original mesh (not shown).

Another motivation of studying the mAChE molecule here is to demonstrate the con-
strained mesh coarsening that turns out to be very useful in refining a region of particular
interest. In molecular simulation, it is a common strategy to have dense meshes near the
active sites and sparser meshes elsewhere, in order to maximize the simulation accuracy
while still retaining a low computational cost. This can be easily done by restricting the
mesh coarsening everywhere except in user-defined regions (e.g., the active sites). In case
of the mAChE molecule we use a few spheres to define the boundary of the active site. The
union of the spheres is where the mesh coarsening is prohibited. Figure 5(b) shows the
constrained mesh coarsening, where the active site contains much denser meshes than the
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rest of the molecular surface. The resulting mesh has 22, 753 nodes and 45, 502 triangles
and the mesh quality is 24.09◦ (minimal angle) and 125.94◦ (max angle).

In Figure 6, we show the meshes generated using our tools on two large molecules. One
is the trimeric bluetongue virus VP97 (PDB-ID: 1BVP) with 8, 109 atoms and the other
is the mAChE tetramer with 36, 650 atoms. The volume size for 1BVP is 206×172×216.
The original mesh has 150, 182 nodes and 300, 360 triangles. It was improved, coarsened,
and smoothed using the methods described in Section 2. The processed mesh, as shown
in Figure 6(a), has 27, 658 nodes and 55, 312 triangles. In addition, the mesh quality was
improved from 0.02◦ (minimal angle) and 179.84◦ (maximal angle) to 21.63◦ (minimal
angle) and 133.99◦ (maximal angle) respectively. The Gaussian blurring technique on
mAChE tetramer results in a volume of 298 × 250 × 266 grids. The original mesh has
444, 362 nodes and 888, 748 triangles and is coarsened (two iterations) to 54, 951 nodes
and 109, 926 triangles. The mesh quality is also improved − the minimal angle increases
from 0.00◦ to 19.57◦ and the maximal angle decreases from 179.75◦ to 127.79◦. An exterior
view of the processed mesh is shown in Figure 6(b).

3.2. Adaptive Tetrahedral Generation
The adaptive tetrahedral meshes are generated by constrained Delaunay triangulation

as implemented in Tetgen [39,40], based on the surface meshes triangulated and processed
by the methods described above. Figure 7(a) and (b) show the interior and exterior
tetrahedral meshes of the molecule 1CID respectively. Since all 1, 381 atoms are forced to
be on the interior mesh nodes, the interior mesh looks more uniform and denser than the
exterior mesh. The bounding sphere for the exterior mesh is usually chosen to be about
40 times larger than the size of the molecule being considered. But for better illustration,
the sphere we show here is about twice as big as the molecule. The sphere is meshed into
4, 350 nodes and 8, 696 triangles. Figure 7(c) shows a closer look at the exterior mesh near
the molecular surface. The interior mesh has a total of 14, 769 and 64, 080 tetrahedra.
The size of the exterior mesh is, however, slightly varying on the radius of the bounding
sphere chosen. If the sphere is about twice as big as the molecule, as shown in 7(b), the
exterior mesh has 21, 899 nodes and 94, 736 tetrahedra. However, if the sphere is chosen
to be 40 times bigger than the molecule, the exterior mesh will contain 22, 318 nodes and
97, 229 tetrahedra.

Figure 8 shows the tetrahedralization of the mAChE molecule with finer meshes at the
active site. The interior mesh and a close look at the active site are shown in Figure
8(a). The interior mesh consists of 46, 908 nodes and 222, 925 tetrahedra. In contrast, the
exterior tetrahedral mesh with a bounding sphere about 40 times larger than the molecule
has a total of 42, 964 nodes and 181, 103 tetrahedra, which, unlike the 1CID molecule, is
smaller than the interior mesh. This is because a large number of interior nodes have to
be created to ensure that all 8, 362 atoms are on the mesh nodes. Figure 8(b) shows the
exterior mesh and a closer look at the active site.

We summarize the mesh generation results on a number of molecules in Table 1, where
1BBH, 1L3R, and 1TIM are PDB IDs representing respectively the cytochrome c’, the
catalytic subunit of cAMP-dependent protein kinase, and the triose phosphate isomerase
from chicken muscle. All surface meshes are generated and post-processed using the
parameters as given in Section 3.1. The mesh coarsening was executed only once for all
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molecules except 1CID, 1BBH, mAChE tetramer that are coarsened and improved for
two iterations (see the flowchart in Figure 1 for illustration). Note how the mesh size
and quality of 1CID changed when the initial mesh was coarsened/improved once (as
previously discussed) and twice (as shown in Table 1). In general, repeating the mesh
coarsening process can reduce the mesh size, but the mesh quality is less sensitive to the
number of iterations executed. The errors in Table 1 represent the dislocations (in Å),
estimated on all the nodes of the processed surface meshes, with respect to the initial
meshes extracted by the marching cube method. As we can see, the maximal dislocations
(the first row for each molecule) are around 0.5Å or one voxel size, and the average
dislocations (the second row) are about 0.05Å. The computer time shown in Table 1 was
estimated on a workstation with a single Intel Xeon 2.0GHz CPU.

3.3. Mesh Quality Analysis
Although the minimal and maximal angles are good indicators of the mesh quality, a

histogram showing the distribution of all angles in a mesh would provide us additional
information about the mesh quality. To this end, we divide the angles ranging from
0◦ to 180◦ into 18 intervals by every 10◦. The normalized histogram in each interval
[i× 10◦ − 10◦, i× 10◦], i = 1, · · · , 18, stands for the percentage of the angles lying in that
interval over the total number of angles in a mesh. We consider four molecules as examples
here: 1CID (1,381 atoms), 1TIM (3,740 atoms), mAChE monomer (8,362 atoms), and
mAChE tetramer (36,650 atoms). Interestingly the histograms of the initial meshes for
all four molecules are almost identical. Therefore we use only one curve to represent
the histograms of the initial meshes, as shown in blue (the thick and dashed one) in
Figure 9. The remaining four curves (the one for 1TIM is almost identical to that of the
mAChE monomer) are the histograms of the meshes after the quality improvement using
the method described in Section 2.2. From these curves we can see that about 85%−90%
of the angles lie in the range of [40◦, 80◦], while in the original meshes there are only
50% of the angles in this range. Like the histograms of the initial meshes, the improved
meshes also show very similar histograms, implying that the modified angle-based method
we described is somewhat data-independent, at least for the meshes extracted from the
Gaussian-blurred molecular maps when the same set of parameters are used.

4. Discussion

4.1. A Fast Gaussian-Blurring Implementation
As we mentioned in Section 2.1, the Gaussian blurring function in Equation (2), com-

pared to Equation (1), has an advantage that the decay rate κ is a constant for all atoms.
This can lead to a fast Gaussian blurring implementation using the recursive scheme
as described in [48]. Let us rewrite Equation (2) into the following standard Gaussian
function:

G(x) =
N∑

i=1

gi
1√
2πσ

e−
‖x−ci‖2

2σ2 , (7)

where

gi =

√
−π

κ
e−κr2

i (8)
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stands for the contribution of ith atom centered at xi with radius ri, and σ =
√
− 1

2κ

is the standard deviation of the Gaussian function. Given a negative constant κ and a
list of atoms, the following steps can be implemented to achieve fast Gaussian-blurring
calculations:

1. Compute σ and gi.

2. Digitize the space into grids (same as we did in Section 2.1). For each atom at xi,
find the nearest grid mi. Initialize the value at mi with gi.

3. Run the recursive Gaussian filtering [48].

It was shown in [48] that the numerical error of the recursive implementation of Gaussian
filter is relatively less than 0.68% compared to the analytical Gaussian function. But the
biggest gain of this scheme is that it can be even faster than the optimized FFT-based
implementation. In case of the molecular maps as we outlined above, there is another
type of error that comes from the approximation of xi with the nearest grid point mi.
However, this digitization error should be quite small when the space is densely sampled.

4.2. Quality Improvements on User-Defined Meshes
In addition to the PQR [19] or PDB [10] formats, our mesh toolchain can also read and

process a user-defined arbitrary triangular mesh that has very low quality or is too large
to be handled by standard numerical simulators. As an example, we consider the mAChE
monomer again and generate the mesh by the widely used MSMS tool [37]. Figure 10(a)
shows the mesh generated by MSMS. As we can see, this mesh looks a little “bumpy”
on the surface and contains a lot of very “sharp” triangles. The minimal and maximal
angles of this mesh are 0.00◦ and 176.92◦ respectively. There are only 47% of the total
angles lying in the range of [40◦, 80◦]. The numbers of nodes and triangles of this mesh
are 62, 402 and 124, 804 respectively. After our mesh quality improvement, coarsening,
and smoothing, we reduce the mesh size to 35, 022 nodes and 70, 044 triangles. The mesh
quality is significantly improved to 25.56◦ (minimal angle) and 125.46◦ (maximal angle).
The picture showing the same region of the mAChE monomer can be seen in Figure 10(b).
In contrast to the 47%, we now have 88% of the angles lying in the range of [40◦, 80◦].
Figure 10(c) depicts the histograms of angles for the meshes before and after our mesh
post-processing algorithms.

4.3. Multilevel Mesh Generation for Multigrid-based Solvers
By coarsening the surface triangular meshes using different values of T0 in Equation

(6), we can achieve a multilevel of meshes with different details. Figure 11 illustrates the
meshes of the 1BVP trimeric molecule at four different levels: T0 = 0.1, 0.3, 0.5 and 0.7.
We can see that, as T0 increases, the mesh size decreases and some small features start
to disappear. From our experiments, T0 = 0.2 seems to be a good tradeoff to balance the
accuracy and the mesh size (cost). An initial mesh, if it is too large, may be subject to
coarsening for two or more times, as is the case shown in Figure 11. This turns out to
preserve features better than simply coarsening the mesh once with a large T0.

It is well-known that the most efficient numerical methods for solving certain classes
of PDEs (called elliptic PDEs) are based on multilevel methods, which are extensions of
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the original multigrid algorithms developed for the Poisson equation in the 1970s [13,24].
The basic idea behind such multilevel methods for solving a linear system Au = f is the
recursive application of a simple two-level method consisting of “Smoothing - Restriction
- Solution - Prolongation” steps [14,25]. Having access to a hierarchy of meshes can
be leveraged to build fast solvers for partial differential equations (PDEs) posed in the
volumetric mesh around the biological structure, or posed on the surface mesh (cf. [2,3]
for detailed discussions of this class of methods and further references).

4.4. Applications: Molecular Simulation
We have successfully applied the exterior tetrahedral mesh of the mAChE monomer as

shown in Figure 8(b) to studying the ACh diffusion behavior near the mAChE molecule.
The exterior mesh alone consists of 42, 964 nodes and 181, 103 tetrahedra. With the
SMOL solver (cf. [17]), the linear system converges very well and the outputs obtained
are consistent with other studies [17,41]. Figure 12 depicts the ACh concentration at the
steady-state Smoluchowski diffusion at 0.150M ionic strength with the external boundary
as Dirichlet using OpenDX. The red represents high concentration, while the blue low
concentration.

All algorithms described in Section 2 have been implemented in ANSI-C and incorpo-
rated into the Finite Element ToolKit (FETK) software suite (http://www.fetk.org) [26]
as one of its major components, called GAMER (Geometry-preserving Adaptive MeshER).
The FETK libraries and tools are developed by the Holst Research Group at UCSD and
are designed to solve coupled systems of partial differential equations (PDE) and integral
equations (IE) using parallel adaptive multilevel finite element methods. Built on top
of this highly portable software toolkit are two widely used application-oriented molec-
ular modeling tools: the APBS [6] and the SMOL [42]. APBS is an adaptive Poisson-
Boltzmann solver, designed for simulating electrostatic properties of molecules in salty,
aqueous media (http://apbs.sourceforge.net/). SMOL is designed to solve the Smolu-
chowski diffusion equation (http://mccammon.ucsd.edu/smol/). The GAMER together
with other libraries in FETK will be made available in source form under the GNU Lesser
General Public License.

5. Conclusion

We presented a set of efficient algorithms dealing with surface and volumetric mesh
generation for molecules with arbitrary sizes and shapes. Our methods have been demon-
strated on a number of examples to generate smooth, adaptive, and high quality meshes
with features well preserved. Although this paper focused on molecular mesh generation
having the center and radius of each atom as inputs, the approaches described here can
also be applied to generate and process meshes from general-type scalar volumes (e.g.,
reconstructed 3D imaging data) or low-quality surface meshes provided by the user (e.g.,
molecular surfaces by MSMS [37]). The availability of our software toolchain will give re-
searchers in molecular/cellular modelling and simulation areas easy access to high-fidelity
geometric models.
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Table 1
A Summary of Surface and Tetrahedral Mesh Generations

Molecules Atoms Surf-N Surf-T Min-A Max-A Tet-N Tet-T Errors Costs

1CID 62,454 124,904 0.02◦ 179.10◦ 6,657 30,774 0.43 37
1,381 3,500 6,996 24.74◦ 119.01◦ 13,228 57,531 0.05 8

1BBH 73,156 146,308 0.02◦ 179.69◦ 12,261 57,326 0.38 53
1,934 6,370 12,736 21.67◦ 117.56◦ 17,660 75,571 0.05 13

1L3R 79,314 158,624 0.02◦ 179.55◦ 24,210 109,129 0.43 64
2,855 13,542 27,080 23.39◦ 128.25◦ 28,986 123,307 0.05 24

1TIM 90,912 181,820 0.02◦ 179.45◦ 31,161 140,826 0.53 77
3,740 17,332 34,660 22.49◦ 123.39◦ 35,194 149,759 0.05 29

1BVP 150,182 300,360 0.02◦ 179.84◦ 54,070 253,799 0.72 139
8,109 27,658 55,312 21.63◦ 133.99◦ 51,136 215,669 0.06 48

mAChE1 96,046 192,088 0.02◦ 179.55◦ 42,456 204,821 0.70 82
8,362 19,795 39,586 23.22◦ 125.93◦ 38,968 165,648 0.06 36

mAChE2 96,046 192,088 0.02◦ 179.55◦ 46,908 222,925 0.70 84
8,362 22,753 45,502 24.09◦ 125.94◦ 42,964 181,103 0.05 40

mAChE3 444,362 888,748 0.00◦ 179.75◦ 134,204 682,573 0.53 432
36,650 54,951 109,926 19.57◦ 127.79◦ 92,805 386,505 0.05 105

Surf-N and Surf-T: surface mesh sizes (nodes and triangles): original (1st row); processed (2nd row).
Min-A and Max-A: mesh quality (minimal/maximal angles): original (1st row); processed (2nd row).
Tet-N and Tet-T: volumetric mesh sizes (nodes and tetrahedra): interior (1st row); exterior (2nd row).
Errors: dislocations (Å) of the processed surface meshes: maximal (1st row); average (2nd row).
Costs: computer time (seconds): surface mesh generation and processing (1st row); TetGen(2nd row).
mAChE1: the mAChE monomer with regular mesh coarsening.
mAChE2: the mAChE monomer with constrained mesh coarsening.
mAChE3: the mAChE tetramer with regular mesh coarsening.

Figure 1. Illustration of our mesh generation toolchain. The inputs can be a list of atoms
(with centers and radii), a 3D scalar volume, or a user-defined surface mesh. The latter
two can be thought of as special cases of the first one.
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(a) (b) (c)

Figure 2. Illustration of the surface generation and post-processing. (a) A 3D volume is
first generated using the Gaussian blurring approach (Equation (1)) from the molecule
(PDB: 1CID). Shown here is part of the surface triangulation by the marching cube
method. (b) The surface mesh after two iterations of running the quality improvement
algorithm. (c) After coarsening, the mesh size becomes about seven times smaller than
the original one. The mesh is also smoothed by the normal-based technique.

Figure 3. Illustration of the angle-based quality improvement algorithm.
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(a) (b) (c) (d)

Figure 4. Illustration of the surface generation and post-processing. This molecule is
taken from PDB (ID: 1CID) and has 1, 381 atoms. (a) The mesh is generated using the
marching cube method and the quality is improved based on the approach we described
in Section 2.2. (b) While the mesh is coarsened and smoothed, which significantly reduces
the mesh size, most important features are still well preserved. (c) An interior view of
the processed mesh. (d) The molecular surface generated with the blobbyness at −2.5.

(a) (b)

Figure 5. Illustration of the regular and constrained mesh coarsening on the mAChE
molecule. (a) The mesh is generated by a regular mesh process as presented in Section 2.
The region indicated by a dashed rectangle is the active site that has the same sampling
rate as other regions. (b) No coarsening is applied near the active site; therefore, the
active site has much denser meshes than elsewhere. An interior and zoomed-in look at
the active site, rotated by 90◦, is shown in both (a) and (b).
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(a) (b)

Figure 6. Mesh generation on two very large molecules. (a) An interior view of the 1BVP
trimer with 8, 109 atoms. (b) An exterior view of the mAChE tetramer that has a total
of 36, 650 atoms.

(a) (b) (c)

Figure 7. Tetrahedral meshes of the molecule 1CID. (a) The interior mesh, having all
atoms on the mesh nodes. (b) The exterior mesh between the molecular surface and the
bounding sphere. The size the sphere is about twice as big as the molecule. (c) A closer
look at the exterior mesh near the molecular surface.
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(a) (b)

Figure 8. Tetrahedral meshes for the mAChE molecule. (a) The interior mesh, having all
atoms on the mesh nodes. (b) The exterior mesh between the molecular surface and the
bounding sphere whose size is about twice as big as the molecule. A closer look at the
active site is shown in both (a) and (b).

Figure 9. Histograms (in percentage) of the angles in the initial and processed meshes.
Four molecules are considered: 1CID, 1TIM, mAChE monomer and mAChE tetramer.
Since all four molecules demonstrate almost identical histograms before quality improve-
ment (QI), we show only one curve (thick and dashed one in blue color) to represent
the histogram for the initial meshes. The other four, shown in different colors, are the
histograms of the processed meshes (1TIM has an almost identical histogram to that of
mAChE monomer). Most angles in the processed meshes lie in the range of [40◦, 80◦].
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(a) (b) (c)

Figure 10. Mesh quality improvement on a user-specified surface mesh. (a) Original mesh
generated by MSMS. (b) After mesh coarsening and quality improvement, the mesh size
is about half as large as the original one, and the quality becomes significantly better.
(c) The angle distributions of the meshes before (dashed or black line) and after (solid or
purple line) the mesh post-processing.

(a) (b) (c) (d)

Figure 11. Multilevel mesh generation by coarsening (experiments on 1BVP). The param-
eter T0 is described in Equation (6). The original mesh has 150, 182 nodes and 300, 360
triangles and is coarsened for two iterations with different coarsening parameters T0. (a)
T0 = 0.1. Nodes = 26,842, Triangles = 53,680. (b) T0 = 0.3. Nodes = 19,588, Triangles
= 39,172. (c) T0 = 0.5. Nodes = 12,882, Triangles = 25,760. (d) T0 = 0.7. Nodes =
9,480, Triangles = 18,956.
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Figure 12. ACh distribution around the mAChE enzyme at the steady-state diffusion
stage simulated by the SMOL solver [17]. Red corresponds to ACh concentration in the
bulk, blue to a concentration of zero.


